1. C.B. Vidal, A.V. Feitosa, G.P. Pessoa, G.S.C. Raulino, A.G. Oliveira, A.B. dos Santos, R.F. Nascimento, Polymeric and silica sorbents on endocrine disruptors determination, Desal. Water Treat., 54 (2015) 156–165.
  2. E.M. Saggioro, F.P. Chaves, L.C. Felix, G. Gomes, D.M. Bila, Endocrine disruptor degradation by UV/chlorine and the impact of their removal on estrogenic activity and toxicity, Int. J. Photoenergy, 2019 (2019) 1–9.
  3. J. de Rudder, T.V.d. Wiele, W. Dhooge, F. Comhaire, W. Verstraete, Advanced water treatment with manganese oxide for the removal of 17α-ethynylestradiol (EE2), Water Res., 38 (2004) 184–192.
  4. P.S. Nasirabadi, E. Saljoughi, S.M. Mousavi, Membrane processes used for removal of pharmaceuticals, hormones, endocrine disruptors and their metabolites from wastewaters: a review, Desal. Water Treat., 57 (2016) 24146–24175.
  5. Q. Sun, G. Zhu, C. Wang, Z. Yang, Q. Xue, Removal characteristics of steroid estrogen in the mixed system through an ozone-based advanced oxidation process, Water Air Soil Pollut., 230 (2019) 218.1–218.14.
  6. I. Forrez, M. Carballa, H. Noppe, H.D. Brabander, N. Boon, W. Verstraete, Influence of manganese and ammonium oxidation on the removal of 17α-ethinylestradiol (EE2), Water Res., 43 (2009) 77–86.
  7. J.-S. Park, N. Her, Y. Yoon, Ultrasonic degradation of bisphenol A, 17β-estradiol, and 17α-ethinyl estradiol in aqueous solution, Desal. Water Treat., 30 (2011) 300–309.
  8. E.K. Maher, K.N. O’Malley, J. Heffron, H. Jingwan, W. Yin, B.K. Mayer, P.J. McNamara, Removal of estrogenic compounds via iron electrocoagulation: impact of water quality and assessment of removal mechanisms, Environ. Sci. Water Res. Technol., 5 (2019) 956–966.
  9. B.T.S. Bui, A.-S. Belmont, H. Witters, K. Haupt, Molecular recognition of endocrine disruptors by synthetic and natural 17β-estradiol receptors: a comparative study, Anal. Bioanal. Chem., 390 (2008) 2081–2088.
  10. L. Jin, L. Chai, L. Ren, Y. Jiang, W. Yang, S. Wang, Q. Liao, H. Wang, L. Zhang, Enhanced adsorption-coupled reduction of hexavalent chromium by 2D poly(m-phenylenediamine)- functionalized reduction graphene oxide, Environ. Sci. Pollut. Res., 26 (2019) 1–12.
  11. S. He, H. Guo, Z. He, C. Yang, T. Yu, Q. Chai, L. Lu, Interaction of Lolium perenne and Hyphomicrobium sp. GHH enhances the removal of 17α-ethinyestradiol (EE2) from soil, J. Soil Sediments, 19 (2019) 1297–1305.
  12. G. Cunha, B.M. de Souza-Chaves, D.M. Bila, J.P. Bassin, M. Dezotti, Insights into estrogenic activity removal using carbon nanotube electrochemical filter, Sci. Total Environ., 678 (2019) 448–456.
  13. H. Yimin, L. Xinqing, F.C. Macazo, G. Matteo, R. Cai, S.D. Minteer, Fast and efficient removal of chromium(VI) anionic species by a reusable chitosan-modified multiwalled carbon nanotube composite, Chem. Eng. J., 339 (2018) 259–267.
  14. K.V.G. Ravikumar, G. Debayan, P. Mrudula, N. Chandrasekaran, M. Amitava, In situ formation of bimetallic FeNi nanoparticles on sand through green technology: application for tetracycline removal, Front. Environ. Sci. Eng., 14 (2020) 16.
  15. T.H. Nam, K. Goto, Y. Shimamura, Y. Inoue, T. Hashida, Effects of high-temperature thermal annealing on properties of aligned multi-walled carbon nanotube sheets and their composites, Compos. Interfaces, 11 (2019) 1–18.
  16. Z.L. Cui, L.F. Dong, Z.K. Zhang, Oxidation behavior of nano-Fe prepared by hydrogen ARC plasma method, Nanostruct. Mater., 5 (1995) 829–833.
  17. C. Ji, L. Meng, H. Wang, Enhanced reductive dechlorination of 1,1,1-trichloroethane using zero-valent iron-biocharcarrageenan microspheres: preparation and microcosm study, Environ. Sci. Pollut. Res. Int., 26 (2019) 30584–30595.
  18. S. Wu,T. Cajthaml, J. Semerad, A. Filipová, M. Klementova, R. Skala, M. Vitkova, Z. Vaňková, M. Teodoro, Z. Wu, D. Martínez-Fernández, M. Komárek, Nano zero-valent iron aging interacts with the soil microbial community: a microcosm study, Environ. Sci.: Nano, 6 (2019) 9081−9090.
  19. Y. Wu, X. Chen, Y. Han, D. Yue, X. Cao, Y. Zhao, X. Qian, Highly efficient utilization of nano-Fe(0) embedded in mesoporous carbon for activation of peroxydisulfate, Environ. Sci. Technol., 53 (2019) 9081–9090.
  20. B. Wang, Y. Wang, Y. Zhou, F. Qi, Q. Ding, J. Li, X. OuYang, L. Liu, Multi-walled carbon nanotube-reinforced boron carbide matrix composites fabricated via ultra-high-pressure sintering, J. Mater. Sci., 54 (2019) 11084–11095.
  21. J. Miyamoto, Y. Hattori, D. Noguchi, H. Tanaka, T. Ohba, S. Utsumi, H. Kanoh, Y.A. Kim, H. Muramatsu, T. Hayashi, M. Endo, K. Kaneko, Efficient H2 adsorption by nanopores of high-purity double-walled carbon nanotubes, J. Am. Chem. Soc., 128(2006) 12636–12637.
  22. S. Ming-Li, C. Rong-Ming, X. Xue-Cheng, C. Yi-Wei, L. Wei, Adsorption of phenolic compounds on carbon nanotubes, J. Northeast Normal Univ., 36 (2004) 71–75.
  23. Z. Lei, Study on the Adsorption Behavior of Modified Muti- Walled Carbon Nano-tubes, Central South University, 2013.
  24. N. Almoisheer, F.A. Alseroury, R. Kumar, T. Almeelbi, M.A. Barakat, Synthesis of graphene oxide/silica/carbon nanotubes composite for removal of dyes from wastewater, Earth Syst. Environ., 3 (2019) 651–659.
  25. L. Yangmei, Y. Min, T. Wei, Y Hong-xing, G. Siqi, L. Guizhen, W. Hongbin, Determination of chlorpyrifos, triazophos and profenofos in vegetables by gas chromatography with solid phase extraction using multiwalled carbon nanotubes as adsorbent, Sci. Technol. Food Ind., 35 (2014) 316–320.
  26. F.H. El-Sweify, I.M. Abdelmonem, A.M. El-Masry, T.E. Siyam, S.F. Abo-Zahra, Adsorption behavior of Co(II) and Eu(III) on polyacrylamide/multiwalled carbon nanotube composites, Radiochemistry, 61 (2019) 323–330.
  27. K. Yang, L.Z. Zhu, B.S. Xing, Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials, Environ. Sci. Technol., 40 (2006) 1855–1861.
  28. H. Zhang, B. Shen, W. Hu, X. Liu, Research on a fast-response thermal conductivity sensor based on carbon nanotube modification, Sensors, 18 (2018) 2191.
  29. S.J. Roosendaal, B.V. Asselen, J.W. Elsenaar, A.M. Vredenberg, F.H.P.M. Habraken, The oxidation state of Fe(100) after initial oxidation in O2, Surf. Sci., 442 (1999) 329–337.
  30. J. Du, Y. Wang, Faheem, T. Xu, H. Zheng, J. Bao, Synergistic degradation of PNP via coupling H2O2 with persulfate catalyzed by nano zero valent iron, RSC Adv., 9 (2019) 20323–20331.
  31. X. Xiaohong, C. Quanshui, Z. Jiawei, L. Xingyu, W. Lingyu, H. Bin, Removal of U(VI) in aqueous solution by supported zerovalent iron on calcium bentonite and the investigation mechanism, Non-Met. Mines, 41 (2018) 83–86.
  32. P. Singh, P. Raizada, S. Kumari, A. Kumar, D. Pathania, P. Thakura, Solar-Fenton removal of malachite green with novel Fe0-activated carbon nanocomposite, Appl. Catal., A, 476 (2014) 9–18.
  33. A.M. Puziy, O.I. Poddubnaya, A. Martínez-Alonso, F. Suárez- García, J.M.D. Tascón, Surface chemistry of phosphoruscontaining carbons of lignocellulosic origin, Carbon, 43(2005) 2857–2868.
  34. A. Wei, J. Ma, J. Chen, Y. Zhang, J. Song, X. Yu, Enhanced nitrate removal and high selectivity towards dinitrogen for groundwater remediation using biochar-supported nano zerovalent iron, Chem. Eng. J., 353 (2018) 595–605.
  35. Y.-L. Ge, Y.-F. Zhang, Y. Yang, S. Xie, Y. Liu, T. Maruyamad, Z.-Y. Deng, X. Zhao, Enhanced adsorption and catalytic degradation of organic dyes by nanometer iron oxide anchored to single-wall carbon nanotubes, Appl. Surf. Sci., 488 (2019) 813–826.
  36. J. Lu, K. Xu, J. Yang, Y. Hao, F. Cheng, Nano iron oxide impregnated in chitosan bead as a highly efficient sorbent for Cr(VI) removal from water, Carbohydr. Polym., 173 (2017) 28–36.
  37. Y.E. Unsal, M. Soylak, M. Tuzen, Spectrophotometric detection of Rhodamine B after separation-enrichment by using multi-walled carbon nanotubes, J. AOAC Int., 5 (2014) 1459–1462.
  38. S.M. Ponder, J.G. Darab, T.E. Mallouk, Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron, Environ. Sci. Technol., 34 (2000) 2564–2569.
  39. H. He, B. Huang, G. Fu, Y. Du, D. Xiong, C. Lai, X. Pan, Coupling electrochemical and biological methods for 17α-ethinylestradiol removal from water by different microorganisms, J. Hazard. Mater., 340 (2017) 120–129.
  40. X. Feng, X. Ping, J. Wei, W. Dongsheng, Immobilization of horseradish peroxidase on Fe3O4 nanoparticles for enzymatic removal of endocrine disrupting chemicals, Environ. Sci. Pollut. Res., 27 (2020) 1–12.
  41. X. Bai, K. Acharya, Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga, Environ. Pollut., 247 (2019) 534–540.
  42. E. Kassotaki, M. Pijuan, I. Rodriguez-Roda, G. Buttiglieri, Comparative assessment of endocrine disrupting compounds removal in heterotrophic and enriched nitrifying biomass, Chemosphere, 217 (2019) 659–668.
  43. Y. Bin, L. Lina, The influence of temperature on the preparation of single-walled carbon nanotubes by ACCVD, Technol. Wind, 17 (2014) 119.
  44. J. Liu, L. Wan, L. Zhang, Q. Zhou, Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanumdoped activated carbon fiber, J. Colloid Interface Sci., 364 (2011) 490–496.
  45. B. Geng, Z. Jin, T. Li, X. Qi, Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water, Sci. Total Environ., 407 (2009) 4994–5000.
  46. J. Hu, C. Chen, X. Zhu, X. Wang, Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes, J. Hazard. Mater., 162 (2009) 1542–1550.
  47. J. Wang, K. Pan, Q. He, B. Cao, Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution, J. Hazard. Mater., 244 (2013) 121–129.
  48. Q.-H. Zhou, T.-Y. Long, J. He, J.-S. Guo, Removal of BPA and EE2 from water by Mn-Fe embedded in acicular mullite, Environ. Sci., 41 (2020) 763–772.
  49. S. Yan, Y. Chen, W. Xiang, Z. Bao, C. Liu, B. Deng, Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: the role of Fe(II) and Fe(III), Chemosphere, 117(2014) 625–630.