1. L.Q. Wang, Y. Li, C.Y. Fan, P.F. Wang, L.H. Niu, L.F. Wang, Nitrate addition promotes the nitrogen cycling processes under the co-contaminated tetrabromobisphenol A and copper condition in river sediment, Environ. Pollut., 251 (2019) 659–667.
  2. L.E. Hanache, L. Sundermann, B. Lebeau, J. Toufaily, T. Hamieh, T.J. Daou, Surfactant-modified MFI-type nanozeolites: super-adsorbents for nitrate removal from contaminated water, Microporous Mesoporous Mater., 283 (2019) 1–13.
  3. X. Jiang, D.W. Ying, D. Ye, R.Q. Zhang, Q.B. Guo, Y.L. Wang, J.P. Jia, Electrochemical study of enhanced nitrate removal in wastewater treatment using biofilm electrode, Bioresour. Technol., 252 (2018) 134–142.
  4. F. Ruiz-Beviá, M.J. Fernandez-Torres, Effective catalytic removal of nitrates from drinking water: an unresolved problem?, J. Cleaner Prod., 217 (2019) 398–408.
  5. Y.H. Shi, G.X. Wu, N. Wei, H.Y. Hu, Denitrification and biofilm growth in a pilot-scale biofilter packed with suspended carriers for biological nitrogen removal from secondary effluent, J. Environ. Sci., 32 (2015) 35–41.
  6. L. Xie, J.R. Chen, R. Wang, Q. Zhou, Effect of carbon source and COD/NO3–N ratio on anaerobic simultaneous denitrification and methanogenesis for high-strength wastewater treatment, J. Biosci. Bioeng., 113 (2012) 759–764.
  7. B. Hu, T. Wang, J.H. Ye, J.Q. Zhao, L.W. Yang, P. Wu, J.L. Duan, G.Q. Ye, Effects of carbon sources and operation modes on the performances of aerobic denitrification process and its microbial community shifts, J. Environ. Manage., 239 (2019) 299–305.
  8. Y.Q. Wu, K. Song, Y.H. Jiang, X.Y. Sun L. Li, Effect of thermal hydrolysis sludge supernatant as carbon source for biological denitrification with pilot-scale two-stage anoxic/oxic process and nitrogen balance model establishment, Biochem. Eng. J., 139 (2018) 132–138.
  9. Z.Q. Shen, Y.X. Zhou, J.L. Wang, Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal, Bioresour. Technol., 131 (2013) 33–39.
  10. Z.H. Si, X.S. Song, Y.H. Wang, X. Cao, Y.F. Zhao, B.D. Wang, Y. Chen, A. Arefe, Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: denitrification efficiency and bacterial community structure, Bioresour. Technol., 267 (2018) 416–425.
  11. S.J. Ge, Y.Z. Peng, S.Y. Wang, C.C. Lu, X. Cao Y.P. Zhu, Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO3–N, Bioresour. Technol., 114 (2012) 137–143.
  12. Z.S. Xu, X.H. Dai, X.L. Chai, Effect of different carbon sources on denitrification performance,microbial community structure and denitrification genes, Sci. Total Environ., 634 (2018) 195–204.
  13. R.X. Hao, S.M. Li, J.B. Li, C.C. Meng, Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: operating performance and bacterial community, Bioresour. Technol., 143 (2013) 178–186.
  14. I. Ivanovic, T.O. Leiknes, Impact of denitrification on the performance of a biofilm-MBR (BF-MBR), Desalination, 283 (2011) 100–105.
  15. F. Han, W. Ye, D. Wei, W.Y. Xu, B. Du, Q. Wei, Simultaneous nitrification-denitrification and membrane fouling alleviation in a submerged biofilm membrane bioreactor with coupling of sponge and biodegradable PBS carrier, Bioresour. Technol., 270 (2018) 156–165.
  16. E.J. McAdam, S.J. Judd, E. Cartmell, B. Jefferson, Influence of substrate on fouling in anoxic immersed membrane bioreactors, Water Res., 41 (2007) 3859–3867.
  17. L. Hao, S.N. Liss, B.Q. Liao, Influence of COD:N ratio on sludge properties and their role in membrane fouling of a submerged membrane bioreactor, Water Res., 89 (2016) 132–141.
  18. APHA, AWWA, and WEF, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, 2005.
  19. F. Fang, M.M. Yang, H. Wang, P. Yan, Y.P. Chen, J.S. Guo, Effect of high salinity in wastewater on surface properties of anammox granular sludge, Chemosphere, 210 (2018) 366–375.
  20. J. Wu, H.M. Zhou, H.Z. Li, P.C. Zhang, J. Jiang, Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor, Water Res., 43 (2009) 3029–3036.
  21. S.Y. Zhai, M. Ji, Y.X. Zhao, S.G. Pavlostathis, Q. Zhao, Effects of salinity and COD/N on denitrification and bacterial community in dicyclictype electrode based biofilm reactor, Chemosphere, 192 (2018) 328–336.
  22. J.L. Wang, Y.Z. Peng, S.Y. Wang, Y.Q. Gao, Nitrogen removal by simultaneous nitrification and denitrification via nitrite in a sequence hybrid biological reactor, Chin. J. Chem. Eng., 16 (2008) 778–784.
  23. C.S. Srinandan, G. D’souza, N. Srivastava, B.B. Nayak, A.S. Nerurkar, Carbon sources influence the nitrate removal activity, community structure and biofilm architecture, Bioresour. Technol., 117 (2012) 292–299.
  24. H. Constantin, M. Fick, Influence of C-sources on the denitrification rate of a high-nitrate concentrated industrial wastewater, Water Res., 31 (1997) 583–589.
  25. J.S. Almeida, M.A.M. Reis, M.J.T. Carrondo, Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens, Biotechnol. Bioeng., 46 (1995) 476–484.
  26. D.T. Shu, Y.L. He, H. Yue, Q.Y. Wang, Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-through put pyrosequencing, Bioresour. Technol., 186 (2015) 163–172.
  27. X.P. Yang, S.M. Wang, L.X. Zhou, Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6, Bioresour. Technol., 104 (2012) 65–72.
  28. Y. Satyawali, M. Balakrishnan, Effect of PAC addition on sludge properties in an MBR treating high strength wastewater, Water Res., 43 (2009) 1577–1588.
  29. H. Ozgun, J.B. Gimenez, M.E. Ersahin, Y. Tao, H. Spanjers, J.B.V. Lier, Impact of membrane addition for effluent extraction on the performance and sludge characteristics of upflow anaerobic sludge blanket reactors treating municipal wastewater, J. Membr. Sci., 479 (2015) 95–104.
  30. L.G. Shen, Q. Lei, J.R. Chen, H.C. Hong, Y.M. He, H.J. Lin, Membrane fouling in a submerged membrane bioreactor: impacts of floc size, Chem. Eng. J., 269 (2015) 328–334.
  31. Z.Z. Wang, Y. Ji, L.N. Yan, D. Zhao, K. Zhang, W. Zhang, S.M. Li, Performance and fouling behaviors in a membraneassisted biological nutrient removal process with focus on the effect of influent COD/N ratio, Desal. Water Treat., 110 (2018) 76–88.
  32. R. Chen, Y.L. Nie, Y.S. Hu, R. Miao, T. Utashiro, Q. Li, M.J. Xu, Y.Y. Li, Fouling behaviour of soluble microbial products and extracellular polymeric substances in a submerged anaerobic membrane bioreactor treating low-strength wastewater at room temperature, J. Membr. Sci., 531 (2017) 1–9.
  33. D.W. Gao, Y. Fu, N.Q. Ren, Tracing biofouling to the structure of the microbial community and its metabolic products: a study of the three-stage MBR process, Water Res., 47 (2013) 6680–6690.
  34. L. Duan, W. Jiang, Y.H. Song, S.Q. Xia, S.W. Hermanowicz, The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactormembrane bioreactor, Bioresour. Technol., 148 (2013) 436–442.
  35. J.H. Teng, L.G. Shen, Y.C. Xu, Y.F. Chen, X.L. Wu, Y.M. He, J.R. Chen, H.J. Lin, Effects of molecular weight distribution of soluble microbial products (SMPs) on membrane fouling in a membrane bioreactor (MBR): novel mechanistic insights, Chemosphere, 248 (2020) 126013–126024.
  36. H.F. Zhang, B.S. Sun, X.H. Zhao, Z.H. Gao, Effect of ferric chloride on fouling in membrane bioreactor, Sep. Purif. Technol., 63 (2008) 341–347.
  37. J.C. Baudez, P. Slatter, N. Eshtiaghi, The impact of temperature on the rheological behaviour of anaerobic digested sludge, Chem. Eng. J., 215 (2013) 182–187.
  38. J.L. Liang, S.W. Zhang, J.J. Huang, M.Y. Ye, X. Yang, S.S. Huang, S.Y. Sun, Mechanism of zero valent iron and anaerobic mesophilic digestion combined with hydrogen peroxide pretreatment to enhance sludge dewaterability: relationship between soluble EPS and rheological behavior, Chemosphere, 247 (2020) 125859–125871.
  39. G. Sabia, M. Ferraris, A. Spagni, Effect of solid retention time on sludge filterability and biomass activity: longterm experiment on a pilot-scale membrane bioreactor treating municipal wastewater, Chem. Eng. J., 221 (2013) 176–184.
  40. Z.C. Wu, Z.W. Wang, Z. Zhou, G.P. Yu, G.W. Gu, Sludge rheological and physiological characteristics in a pilot-scale submerged membrane bioreactor, Desalination, 212 (2007) 152–164.
  41. J.P. Croué, M.F. Benedetti, D. Violleau, J.A. Leenheer, Characterization and copper binding of humic and nonhumic organic matter isolated from South Platte River: evidence for the presence of nitrogenous binding site, Environ. Sci. Technol., 37 (2003) 328–336.
  42. M. Kumar, S.S. Adham, W.R. Pearce, Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type, Environ. Sci. Technol., 40 (2006) 2037–2044.