1. L.S. Yoong, F.K. Chong, B.K. Dutta, Development of copperdoped TiO2 photocatalyst for hydrogen production under visible light, Energy, 34 (2009) 1652–1661.
  2. M.M. Waskasi, S.M. Hashemianzadeh, O. Mostajabi Sarhangi, A.P. Harzandi, Computational model of hydrogen production by Coumarin-dye-sensitized water splitting to absorb the visible light in a local electric field, Energy Convers. Manage., 62 (2012) 154–164.
  3. D. Gao, W. Liu, Y. Xu, P. Wang, J. Fan, H. Yu, Core-shell Ag@ Ni cocatalyst on the TiO2 photocatalyst: one-step photoinduced deposition and its improved H2-evolution activity, Appl. Catal., B, 260 (2020) 118190, doi: 10.1016/j.apcatb.2019.118190.
  4. L. Long, J. Li, L. Wu, X. Li, Enhanced photocatalytic performance of platinized CdS/TiO2 by optimizing calcination temperature of TiO2 nanotubes, Mater. Sci. Semicond. Process., 26 (2014) 107–111.
  5. S. Boumaza, R. Bouarab, M. Trari, A. Bouguelia, Hydrogen photo-evolution over the spinel CuCr2O4, Energy Convers. Manage., 50 (2009) 62–68.
  6. N. Dubey, S.S. Rayalu, N.K. Labhsetwar, S. Devotta, Visible light active zeolite-based photocatalysts for hydrogen evolution from water, Int. J. Hydrogen Energy, 33 (2008) 5958–5966.
  7. E. Hong, D. Kim, J.H. Kim, Heterostructured metal sulfide (ZnS–CuS–CdS) photocatalyst for high electron utilization in hydrogen production from solar water splitting, J. Ind. Eng. Chem., 20 (2014) 3869–3874.
  8. S. Obregón, M.J. Muñoz-Batista, M. Fernández-García, A. Kubacka, G. Colón, Cu–TiO2 systems for the photocatalytic H2 production: influence of structural and surface support features, Appl. Catal., B, 179 (2015) 468–478.
  9. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38 (2009) 253–278.
  10. J. Shen, R. Wang, Q. Liu, X. Yang, H. Tang, J. Yang, Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2, Chin. J. Catal., 40 (2019) 380–389.
  11. J. Romão, R. Salata, S.-Y. Park, G. Mul, Photocatalytic methanol assisted production of hydrogen with simultaneous degradation of methyl orange, Appl. Catal., A, 518 (2016) 206–212.
  12. H. Li, P. Wang, X. Yi, H. Yu, Edge-selectively amidated graphene for boosting H2-evolution activity of TiO2 photocatalyst, Appl. Catal., B, 264 (2020) 118504, doi: 10.1016/j.apcatb.2019.118504.
  13. M. Haghighi, F. Rahmani, F. Kariminejad, R. Akbari Sene, Photodegradation of lignin from pulp and paper mill effluent using TiO2/PS composite under UV-LED radiation: optimization, toxicity assessment and reusability study, Process Saf. Environ., 122 (2019) 48–57.
  14. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using for hydrogen production, Renewable Sustainable Energy Rev., 11 (2007) 401–425.
  15. H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: a review, Renewable Sustainable Energy Rev., 43 (2015) 599–610.
  16. A. Taheri Najafabadi, F. Taghipour, Physicochemical impact of zeolites as the support for photocatalytic hydrogen production using solar-activated TiO2-based nanoparticles, Energy Convers. Manage., 82 (2014) 106–113.
  17. A. Chica, Zeolites: promised materials for the sustainable production of hydrogen, ISRN Chem. Eng., 2013 (2013) 1–19, doi: 10.1155/2013/907425.
  18. S. Ikeda, K. Hirao, S. Ishino, M. Matsumura, B. Ohtani, Preparation of platinized strontium titanate covered with hollow silica and its activity for overall water splitting in a novel phase-boundary photocatalytic system, Catal. Today, 117 (2006) 343–349.
  19. Y. Xu, W. Zheng, W. Liu, Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2, J. Photochem. Photobiol., A., 122 (1999) 57–60.
  20. J.-M. Herrmann, J. Matos, J. Disdier, C. Guillard, J. Laine, S. Malato, J. Blanco, Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension, Catal. Today, 54 (1999) 255–265.
  21. S.K. Parayil, H.S. Kibombo, R.T. Koodali, Naphthalene derivatized TiO2–carbon hybrid materials for efficient photocatalytic splitting of water, Catal. Today, 199 (2013) 8–14.
  22. T. Torimoto, Y. Okawa, N. Takeda, H. Yoneyama, Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane, J. Photochem. Photobiol., A, 103 (1997) 153–157.
  23. S. Gomez, C.L. Marchena, L. Pizzio, L. Pierella, Preparation and characterization of TiO2/HZSM-11 zeolite for photodegradation of dichlorvos in aqueous solution, J. Hazard. Mater., 258–259 (2013) 19–26.
  24. S. Shen, L. Guo, Hydrothermal synthesis, characterization, and photocatalytic performances of Cr incorporated, and Cr and Ti co-incorporated MCM-41 as visible light photocatalysts for water splitting, Catal. Today, 129 (2007) 414–420.
  25. V. Durgakumari, M. Subrahmanyam, K.V. Subba Rao, A. Ratnamala, M. Noorjahan, K. Tanaka, An easy and efficient use of TiO2 supported HZSM-5 and TiO2+HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol, Appl. Catal., A, 234 (2002) 155–165.
  26. M. Mahalakshmi, S. Vishnu Priya, B. Arabindoo, M. Palanichamy, V. Murugesan, Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ zeolite-supported TiO2, J. Hazard. Mater., 161 (2009) 336–343.
  27. N. Dubey, N.K. Labhsetwar, S. Devotta, S.S. Rayalu, Hydrogen evolution by water splitting using novel composite zeolitebased photocatalyst, Catal. Today, 129 (2007) 428–434.
  28. C. Jiang, K.Y. Lee, C.M.A. Parlett, M.K. Bayazit, C.C. Lau, Q. Ruan, S.J.A. Moniz, A.F. Lee, J. Tang, Size-controlled TiO2 nanoparticles on porous hosts for enhanced photocatalytic hydrogen production, Appl. Catal., A, 521 (2016) 133–139.
  29. C. Wang, H. Shi, Y. Li, Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts, Appl. Surf. Sci., 258 (2012) 4328–4333.
  30. Q. Sun, X. Hu, S. Zheng, Z. Sun, S. Liu, H. Li, Influence of calcination temperature on the structural, adsorption and photocatalytic properties of TiO2 nanoparticles supported on natural zeolite, Powder Technol., 274 (2015) 88–97.
  31. S. Liu, M. Lim, R. Amal, TiO2-coated natural zeolite: rapid humic acid adsorption and effective photocatalytic regeneration, Chem. Eng. Sci., 105 (2014) 46–52.
  32. A. Taheri Najafabadi, F. Taghipour, Cobalt precursor role in the photocatalytic activity of the zeolite-supported TiO2-based photocatalysts under visible light: a promising tool toward zeolite-based core–shell photocatalysis, J. Photochem. Photobiol., A, 248 (2012) 1–7.
  33. F. Rahmani, M. Haghighi, M. Amini, The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene, J. Ind. Eng. Chem., 31 (2015) 142–155.
  34. S. Khodadoust, A. Sheini, N. Armand, Photocatalytic degradation of monoethanolamine in wastewater using nanosized TiO2 loaded on clinoptilolite, Spectrochim. Acta, Part A, 92 (2012) 91–95.
  35. S. Ko, P.D. Fleming, M. Joyce, P. Ari-Gur, High performance nano-titania photocatalytic paper composite. Part II: preparation and characterization of natural zeolite-based nano-titania composite sheets and study of their photocatalytic activity, Mater. Sci. Eng., B, 164 (2009) 135–139.
  36. R. Akbari Sene, G.R. Moradi, S. Sharifnia, Sono-dispersion of TiO2 nanoparticles over clinoptilolite used in photocatalytic hydrogen production: effect of ultrasound irradiation during conventional synthesis methods, Ultrason. Sonochem., 37 (2017) 490–501.
  37. R. Akbari Sene, S. Sharifnia, G.R. Moradi, On the impact evaluation of various chemical treatments of support on the photocatalytic properties and hydrogen evolution of sonochemically synthesized TiO2/clinoptilolite, Int. J. Hydrogen Energy, 43 (2018) 695–707.
  38. F. Rahmani, M. Haghighi, S. Mahboob, CO2-enhanced dehydrogenation of ethane over sonochemically synthesized Cr/clinoptilolite-ZrO2 nanocatalyst: effects of ultrasound irradiation and ZrO2 loading on catalytic activity and stability, Ultrason. Sonochem., 33 (2016) 150–163.
  39. M. Bahrami, A. Nezamzadeh-Ejhieh, Effect of the supported ZnO on clinoptilolite nano-particles in the photodecolorization of semi-real sample bromothymol blue aqueous solution, Mater. Sci. Semicond. Process., 30 (2015) 275–284.
  40. A. Nezamzadeh-Ejhieh, H. Zabihi-Mobarakeh, Heterogeneous photodecolorization of mixture of methylene blue and bromophenol blue using CuO-nano-clinoptilolite, J. Ind. Eng. Chem., 20 (2014) 1421–1431.
  41. Z. Yan, X. Yu, Y. Zhang, H. Jia, Z. Sun, P. Du, Enhanced visible light-driven hydrogen production from water by a noble-metalfree system containing organic dye-sensitized titanium dioxide loaded with nickel hydroxide as the cocatalyst, Appl. Catal., B, 160–161 (2014) 173–178.
  42. T. Sreethawong, C. Junbua, S. Chavadej, Photocatalytic H2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO2 nanocrystal photocatalyst, J. Power Sources, 190 (2009) 513–524.
  43. M. Park, B.S. Kwak, S.W. Jo, M. Kang, Effective CH4 production from CO2 photoreduction using TiO2/x mol% Cu–TiO2 double-layered films, Energy Convers. Manage., 103 (2015) 431–438.
  44. M.T. Merajin, S. Sharifnia, S.N. Hosseini, N. Yazdanpour, Photocatalytic conversion of greenhouse gases (CO2 and CH4) to high value products using TiO2 nanoparticles supported on stainless steel webnet, J. Taiwan Inst. Chem. Eng., 44 (2013) 239–246.
  45. F. Rahmani, M. Haghighi, Y. Vafaeian, P. Estifaee, Hydrogen production via CO2 reforming of methane over ZrO2-doped Ni/ZSM-5 nanostructured catalyst prepared by ultrasound assisted sequential impregnation method, J. Power Sources, 272 (2014) 816–827.
  46. F. Rahmani, M. Haghighi, C2H6/CO2 oxidative dehydrogenation (ODH) reaction on nanostructured CrAPSO-34 catalyst: one-pot hydrothermal vs. conventional hydrothermal/impregnation catalyst synthesis, Korean J. Chem. Eng., 33 (2016) 2555–2566.
  47. A. Nezamzadeh-Ejhieh, S. Khorsandi, Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite, J. Ind. Eng. Chem., 20 (2014) 937–946.
  48. F. Rahmani, M. Haghighi, Sono-dispersion of Cr over nanostructured LaAPSO-34 used in CO2 assisted dehydrogenation of ethane: effects of Si/Al ratio and La incorporation, J. Nat. Gas. Sci. Eng., 27 (2015) 1684–1701.
  49. G. Guo, Y. Hu, S. Jiang, C. Wei, Photocatalytic oxidation of NOx over TiO2/HZSM-5 catalysts in the presence of water vapor: effect of hydrophobicity of zeolites, J. Hazard. Mater., 223–224 (2012) 39–45.
  50. H. Li, X. Cui, A hydrothermal route for constructing reduced graphene oxide/TiO2 nanocomposites: enhanced photocatalytic activity for hydrogen evolution, Int. J. Hydrogen Energy, 39 (2014) 19877–19886.
  51. P.K. Dubey, P. Tripathi, R.S. Tiwari, A.S.K. Sinha, O.N. Srivastava, Synthesis of reduced graphene oxide–TiO2 nanoparticle composite systems and its application in hydrogen production, Int. J. Hydrogen Energy, 39 (2014) 16282–16292.
  52. H.B. Yener, M. Yılmaz, Ö. Deliismail, S.F. Özkan, Ş.Ş. Helvacı, Clinoptilolite supported rutile TiO2 composites: synthesis, characterization, and photocatalytic activity on the degradation of terephthalic acid, Sep. Purif. Technol., 173 (2017) 17–26.
  53. H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2,4-dinitroaniline aqueous solution, J. Ind. Eng. Chem., 26 (2015) 315–321.
  54. A. Nezamzadeh-Ejhieh, N. Moazzeni, Sunlight photodecolorization of a mixture of Methyl Orange and Bromocresol Green by CuS incorporated in a clinoptilolite zeolite as a heterogeneous catalyst, J. Ind. Eng. Chem., 19 (2013) 1433–1442.
  55. W. Zhang, F. Bi, Y. Yu, H. He, Phosphoric acid treating of ZSM-5 zeolite for the enhanced photocatalytic activity of TiO2/HZSM-5, J. Mol. Catal., A, 372 (2013) 6–12.
  56. M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda, Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of pt, J. Phys. Chem. B, 101 (1997) 2632–2636.
  57. A.H. Alwash, A.Z. Abdullah, N. Ismail, Zeolite Y encapsulated with Fe–TiO2 for ultrasound-assisted degradation of amaranth dye in water, J. Hazard. Mater., 233–234 (2012) 184–193.
  58. H. Yahiro, T. Miyamoto, N. Watanabe, H. Yamaura, Photocatalytic partial oxidation of α-methylstyrene over TiO2 supported on zeolites, Catal. Today, 120 (2007) 158–162.
  59. J.-D. Lin, S. Yan, Q.-D. Huang, M.-T. Fan, Y.-Z. Yuan, T.T.-Y. Tan, D.-W. Liao, TiO2 promoted by two different non-noble metal cocatalysts for enhanced photocatalytic H2 evolution, Appl. Surf. Sci., 309 (2014) 188–193.
  60. T. Sun, E. Liu, J. Fan, X. Hu, F. Wu, W. Hou, Y. Yang, L. Kang, High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method, Chem. Eng. J., 228 (2013) 896–906.
  61. P. Cheng, Z. Yang, H. Wang, W. Cheng, M. Chen, W. Shangguan, G. Ding, TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water, Int. J. Hydrogen Energy, 37 (2012) 2224–2230.
  62. C. Wang, Y. Li, Preparation and characterisation of S doped TiO2/natural zeolite with photocatalytic and adsorption activities, Mater. Technol., 29 (2014) 204–209.
  63. N.-L. Wu, M.-S. Lee, Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution, Int. J. Hydrogen Energy, 29 (2004) 1601–1605.
  64. S. Sharma, M.R. Pai, G. Kaur, Divya, V.R. Satsangi, S. Dass, R. Shrivastav, Efficient hydrogen generation on CuO core/AgTiO2 shell nano-hetero-structures by photocatalytic splitting of water, Renewable Energy, 136 (2019) 1202–1216.
  65. X. Wei, C. Shao, X. Li, N. Lu, K. Wang, Z. Zhang, Y. Liu, Facile in situ synthesis of plasmonic nanoparticles-decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution, Nanoscale, 8 (2016) 11034–11043.
  66. H. Enzweiler, P.H. Yassue-Cordeiro, M. Schwaab, E. Barbosa-Coutinho, M.H.N. Olsen Scaliante, N.R.C. Fernandes, Evaluation of Pd-TiO2/ZSM-5 catalysts composition effects on hydrogen production by photocatalytic water splitting, Int. J. Hydrogen Energy, 43 (2018) 6515–6525.
  67. M. Ikeda, Y. Kusumoto, S. Somekawa, P. Ngweniform, B. Ahmmad, Effect of graphite silica on TiO2 photocatalysis in hydrogen production from water–methanol solution, J. Photochem. Photobiol., A, 184 (2006) 306–312.
  68. J.C. White, P.K. Dutta, Assembly of nanoparticles in zeolite Y for the photocatalytic generation of hydrogen from water, J. Phys. Chem. C, 115 (2011) 2938–2947.