References

  1. A.O. Adeola, Fate and toxicity of chlorinated phenols of environmental implications: a review, Med. Anal. Chem. Int. J., 2 (2018), doi: 10.23880/macij-16000126.
  2. G.Z. Li, S.J. Park, D.-W. Kang, R. Krajmalnik-Brown, B.E. Rittmann, 2,4,5-trichlorophenol degradation using a novel TiO2-coated biofilm carrier: roles of adsorption, photocatalysis, and biodegradation, Environ. Sci. Technol., 45 (2011) 8359–8367.
  3. A.O. Olaniran, E.O. Igbinosa, Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes, Chemosphere, 83 (2011) 1297–1306.
  4. N. Takahashi, T. Nakai, Y. Satoh, Y. Katoh, Variation of biodegradability of nitrogenous organic compounds by ozonation, Water Res., 28 (1994) 1563–1570.
  5. A.M. Abeish, H.M. Ang, H. Znad, Solar photocatalytic degradation of chlorophenols mixture (4-CP and 2,4-DCP): mechanism and kinetic modelling, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 50 (2015) 125–134.
  6. T.I. Poznyak, I.C. Oria, A.S. Poznyak, Ozonation and Biodegradation in Environmental Engineering: Dynamic Neural Network Approach, Elsevier, Amsterdam, The Netherlands, 2019.
  7. N.K. Temel, M. Sökmen, New catalyst systems for the degradation of chlorophenols, Desalination, 281 (2011) 209–214.
  8. R. Saravanan, F. Gracia, A. Stephen, Nanocomposites for Visible Light-induced Photocatalysis, M. Khan, D. Pradhan, Y. Sohn, Eds., Basic Principles, Mechanism, and Challenges of Photocatalysis, Springer Series on Polymer and Composite Materials, Springer, Cham, 2017, pp. 19–41.
  9. J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, J. Am. Chem. Soc., 114 (2014) 9919–9986.
  10. S. Sakthivel, H. Kisch, Daylight photocatalysis by carbonmodified titanium dioxide, Angew. Chem. Int. Ed., 42 (2003) 4908–4911.
  11. H. Saleem, A. Habib, Study of band gap reduction of TiO2 thin films with variation in GO contents and use of TiO2/graphene composite in hybrid solar cell, J. Alloys Compd., 679 (2016) 177–183.
  12. Y. Mahmiani, A.M. Sevim, A. Gül, Photocatalytic degradation of 4-chlorophenol under visible light by using TiO2 catalysts impregnated with Co(II) and Zn(II) phthalocyanine derivatives, J. Photochem. Photobiol., A, 321 (2016) 24–32.
  13. N.S. Allen, N. Mahdjoub, V. Vishnyakov, P.J. Kelly, R.J. Kriek, The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2), Polym. Degrad. Stab., 150 (2018) 31–36.
  14. K. Fischer, A. Gawel, D. Rosen, M. Krause, A.A. Latif, J. Griebel, A. Prager, A. Schulze, Low-temperature synthesis of anatase/rutile/brookite TiO2 nanoparticles on a polymer membrane for photocatalysis, Catalysts, 7 (2017) 1–14, doi: 10.3390/ catal7070209.
  15. A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, Catalysts, 3 (2013) 189–218.
  16. G. Waldner, M. Pourmodjib, R. Bauer, M. Neumann-Spallart, Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes, Chemosphere, 50 (2003) 989–998.
  17. O. Avilés-García, J. Espino-Valencia, R. Romero, J.L. Rico-Cerda, R. Natividad, Oxidation of 4-chlorophenol by mesoporous titania: effect of surface morphological characteristics, Int. J. Photoenergy, 2014 (2014), https://doi.org/10.1155/2014/210751.
  18. X.Y. Li, Y. Hou, Q.D. Zhao, W. Teng, X.J. Hu, G.H. Chen, Capability of novel ZnFe2O4 nanotube arrays for visiblelight induced degradation of 4-chlorophenol, Chemosphere, 82 (2011) 581–586.
  19. M.Q. Hu, Y.M. Xu, Visible light induced degradation of chlorophenols in the presence of H2O2 and iron substituted polyoxotungstate, Chem. Eng. J., 246 (2014) 299–305.
  20. A.B. Lavand, Y.S. Malghe, Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite, J. Saudi Chem. Soc., 19 (2015) 471–478.
  21. K.A. Mcdonnell, N. Wadnerkar, N.J. English, M. Rahman, D. Dowling, Photo-active and optical properties of bismuth ferrite (BiFeO3): an experimental and theoretical study, Chem. Phys. Lett., 572 (2013) 78–84.
  22. T. Gao, Z. Chen, Q.L. Huang, F. Niu, X.N. Huang, L.S. Qin, Y.X. Huang, A review: preparation of bismuth ferrite nanoparticles and its applications in visible-light induced photocatalyses, Rev. Adv. Mater. Sci., 40 (2015) 97–109.
  23. T. Tong, H. Zhang, J.G. Chen, D.R. Jin, J.R. Cheng, The photocatalysis of BiFeO3 disks under visible light irradiation, Catal. Commun., 87 (2016) 23–26.
  24. F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.-M. Liu, Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles, Adv. Mater., 19 (2007) 2889–2892.
  25. N.A. Lomanova, V.V. Gusarov, Influence of synthesis temperature on BiFeO3 nanoparticles formation, Nanosyst. Phys. Chem. Math., 4 (2013) 696–705.
  26. C. Masingboon, S. Maensiri, Synthesize, characterization and magnetic properties of nanoparticle bismuth ferrite (BiFeO3) prepared by a simple sol–gel route using egg white, Ferroelectrics, 457 (2013) 89–96.
  27. M. Sivagnanavelmurugan, S. Radhakrishnan, A. Palavesam, V. Arul, G. Immanuel, Characterization of alginic acid extracted from Sargassum wightii and determination of its antiviral activity on shrimp Penaeus monodon postlarvae against white spot syndrome virus, Int. J. Curr. Res. Life Sci., 7 (2018) 1863–1872.
  28. H.A.M. Azmy, N.A. Razuki, A.W. Aziz, N.S.A. Satar, N.H.M. Kaus, Visible light photocatalytic activity of BiFeO3 nanoparticles for degradation of methylene blue, J. Phys. Sci., 28 (2017) 85–103.
  29. N.A. Yusoff, L.-N. Ho, S.-A. Ong, Y.-S. Wong, W.F. Khalik, M.F. Ridzwan, Enhanced photodegradation of phenol by ZnO nanoparticles synthesized through sol–gel method, Sains Malaysiana, 46 (2017) 2507–2514.
  30. X.F. Bai, J. Wei, B. Tian, Y. Liu, T. Reiss, N. Guiblin, P. Gemeiner, B. Dkhil, I.C. Infante, Size effect on optical and photocatalytic properties in BiFeO3 nanoparticles, J. Phys. Chem. C, 120 (2016) 3595–3601.
  31. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Photocatalytic degradation of chlorophenols under direct solar radiation in the presence of ZnO catalyst, Res. Chem. Intermed., 39 (2013) 1981–1996.
  32. N.S. Abdul Satar, R. Adnan, H.L. Lee, S.R. Hall, T. Kobayashi, M.H.M. Kassim, N.H.M. Kaus, Facile green synthesis of ytrium-doped BiFeO3 with highly efficient photocatalytic degradation towards methylene blue, Ceram. Int., 45 (2019) 15964–15973.
  33. X.J. Li, J.W. Cubbage, W.S. Jenks, Photocatalytic degradation of 4-chlorophenol. 2. The 4-chlorocatechol pathway, The J. Org. Chem., 64 (1999) 8525–8536.
  34. H. Bel Hadjltaief, A. Sdiri, M.E. Gálvez, H. Zidi, P. Da Costa, M. Ben Zina, Natural hematite and siderite as heterogeneous catalysts for an effective degradation of 4-chlorophenol via photo-Fenton process, Chem. Eng., 2 (2018) 29.
  35. Y.A. Mustafa, A.H. Shihab, Removal of 4-chlorophenol from wastewater using a pilot-scale advanced oxidation process, Desal. Water Treat., 51 (2013) 6663–6675.
  36. C. Catrinescu, D. Arsene, P. Apopei, C. Teodosiu, Degradation of 4-chlorophenol from wastewater through heterogeneous Fenton and photo-Fenton process, catalyzed by Al–Fe PILC, Appl. Clay Sci., 58 (2012) 96–101.
  37. J. Zhang, G. Zhang, Q.H. Ji, H.C. Lan, J.H. Qu, H.J. Liu, Carbon nanodot-modified FeOCl for photo-assisted Fenton reaction featuring synergistic in-situ H2O2 production and activation, Appl. Catal., B, 266 (2020) 118665.