References

  1. A. Fakhru’l-Razi, A. Pendashteh, L.C. Abdullah, D.R.A. Biak, S.S. Madaeni, Z.Z. Abidin, Review of technologies for oil and gas produced water treatment, J. Hazard. Mater., 170 (2009) 530–551.
  2. E.T. Igunnu, G.Z. Chen, Produced water treatment technologies, Int. J. Low-Carbon Technol., 9 (2014) 157–177.
  3. N.L. Le, S.P. Nunes, Materials and membrane technologies for water and energy sustainability, Sustain. Mater. Technol., 7 (2016) 1–28.
  4. Y. Hedar, Budiyono, Pollution Impact and Alternative Treatment for Produced Water, E3S Web Conf., 31 (2018) 03004.
  5. N. Ferronato, V. Torretta, Waste Mismanagement in developing countries: a review of global issues, Int. J. Environ. Res. Public Health, 16 (2019), https://doi.org/10.3390/ijerph 16061060.
  6. V. Tornero, G. Hanke, Chemical contaminants entering the marine environment from sea-based sources: a review with a focus on European seas, Mar. Pollut. Bull., 112 (2016) 17–38.
  7. J.M. Neff, T.C. Sauer, N. Maciolek, Composition, Fate and Effects of Produced Water Discharges to Nearshore Marine Waters, J.P. Ray, F.R. Engelhardt, Eds., Prod. Water, Springer US, Boston, MA, 1992, pp. 371–385.
  8. P.G. Grini, M. Hjelsvold, S. Johnsen, Choosing Produced Water Treatment Technologies Based on Environmental Impact Reduction, SPE International Conference Health, Safety and Environment Oil and Gas Exploration and Production, Society of Petroleum Engineers, Kuala Lumpur, Malaysia, 2002, https://doi.org/10.2118/74002-MS.
  9. G. Chen, H. Su, M. Zhang, F. Huo, J. Zhang, X. Hao, J. Zhao, New bactericide derived from Isatin for treating oilfield reinjection water, Chem. Cent. J., 6 (2012) 90.
  10. G. Chen, M. Zhang, J. Zhao, R. Zhou, Z. Meng, J. Zhang, Investigation of ginkgo biloba leave extracts as corrosion and oil field microorganism inhibitors, Chem. Cent. J., 7 (2013) 83.
  11. V. Carlson, E.O. Bennett, J.A. Rowe, Microbial flora in a number of oilfield water-injection systems, Soc. Pet. Eng. J., 1 (1961) 71–80.
  12. M. Yo, Country Analysis Brief: Kuwait, (n.d.) 14.
  13. K. AlAnezi, M. Belkharchouche, S. Alali, W. Abuhaimed, Produced water characterization in Kuwait and its impact on environment, Desal Water Treat., 51 (2013) 302–306.
  14. U.W.R. Siagian, S. Widodo, Khoiruddin, A.K. Wardani, I.G. Wenten, Oilfield Produced Water Reuse and Reinjection with Membrane, MATEC Web Conf., 156 (2018) 08005, https://doi.org/10.1051/matecconf/201815608005.
  15. M. Al-Shammiri, A. Al-Saffar, S. Bohamad, M. Ahmed, Waste water quality and reuse in irrigation in Kuwait using microfiltration technology in treatment, Desalination, 185 (2005) 213–225.
  16. M.A. Darwish, H.K. Abdulrahim, A.S. Hassan, A.O. Sharif, Needed seawater reverse osmosis pilot plant in Qatar, Desal. Water Treat., 57 (2016) 3793–3819.
  17. T. Tran, Standard Methods For the Examination of Water and Wastewater, 23rd ed. Available at: https://www.academia. edu/38769108/Standard_Methods_For_the_Examination_of_ Water_and_Wastewater_23nd_ed (accessed February 21, 2020).
  18. apha-biochemical-oxygen-demand-white-paper.pdf, (n.d.). https:// beta-static.fishersci.com/content/dam/fishersci/en_US/ documents/programs/scientific/technical-documents/whitepapers/ apha-biochemical-oxygen-demand-white-paper.pdf (accessed July 21, 2020).
  19. Pentair Home Ro Smartflo Ro Uv, Indiamart.Com. (n.d.). Available at: https://www.indiamart.com/proddetail/pentairhome- ro-smartflo-ro-uv-19648086248.html (accessed July 26, 2020).
  20. A. Abusam, A.B. Shahalam, Wastewater Reuse in Kuwait: Opportunities and Constraints, Putrajaya, Malaysia, 2013, pp. 745–754.
  21. X. Dai, J. Fang, L. Li, Y. Dong, J. Zhang, Enhancement of COD removal from oilfield produced wastewater by combination of advanced oxidation, adsorption and ultrafiltration, Int. J. Environ. Res. Public Health, 16 (2019) 3223.
  22. Why is Important the Oxygen Dissolved in Water, (n.d.). Available at: https://www.lenntech.com/why_the_oxygen_dissolved_is_important.htm (accessed October 19, 2019).
  23. C.-W. Liu, Y. Sung, B.-C. Chen, H.-Y. Lai, Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.), Int. J. Environ. Res. Public Health, 11 (2014) 4427–4440.
  24. H.S. Abd El-Gawad, Oil and grease removal from industrial wastewater using new utility approach, Adv. Environ. Chem., 2014 (2014) 1–6, https://doi.org/10.1155/2014/916878.
  25. K. Jeejeebhoy, Zinc: an essential trace element for parenteral nutrition, Gastroenterology, 137 (2009) S7–S12.
  26. H. Jeong, H. Kim, T. Jang, Irrigation water quality standards for indirect wastewater reuse in agriculture: a contribution toward sustainable wastewater reuse in South Korea, Water, 8 (2016) 169.
  27. Irrigation Water Quality Guidelines for Turfgrass Sites, Penn State Ext. (n.d.). Available at: https://extension.psu.edu/ irrigation-water-quality-guidelines-for-turfgrass-sites (accessed February 21, 2020).
  28. T.A. Ternes, M. Bonerz, N. Herrmann, B. Teiser, H.R. Andersen, Irrigation of treated wastewater in Braunschweig, Germany: an option to remove pharmaceuticals and musk fragrances, Chemosphere, 66 (2007) 894–904.
  29. H. Wang, J. Gao, X. Li, S. Zhang, H. Wang, Nitrate accumulation and leaching in surface and ground water based on simulated rainfall experiments, PLoS One, 10 (2015) e0136274, https://doi. org/10.1371/journal.pone.0136274.
  30. M.J. Travis, N. Weisbrod, A. Gross, Accumulation of oil and grease in soils irrigated with greywater and their potential role in soil water repellency, Sci. Total Environ., 394 (2008) 68–74.
  31. AOS, Treatment Solutions. Available at: https://aosts.com/ how-to-reduce-chemical-oxygen-demand-cod-in-wastewater/