1. R.J. Gilliom, Pesticides in US streams and groundwater, Environ. Sci. Technol., 41 (2007) 3408–3414.
  2. A. Jabłońska-Trypuć, E. Wołejko, U. Wydro, A. Butarewicz, B. Łozowicka, MCPA (2-methyl-4-chlorophenoxyacetic acid) and sulfosulfuron—pesticides with potential endocrine disrupting compounds properties, Desal. Water Treat., 117 (2018) 194–201.
  3. M. Yalvaç, D.E. Avcı, F. Taner, Investigation of methamidophos in deep well water at Göksu Delta, Turk. J. Aquat. Life, 2 (2004) 424–432.
  4. G.W. Ware, Pesticides: Chemical Tools, H.W. Freeman and Company, New York, NY, 1983.
  5. W. Aktar, D. Sengupta, A. Chowdhury, Impact of pesticides use in agriculture: their benefits and hazards, Interdiscip. Toxicol., 2 (2009) 1–12.
  6. R.J. Stevenson, Y. Pan, Assessing Environmental Conditions in Rivers and Streams with Diatoms, Cambridge University Press, Cambridge, 1999.
  7. Ç. Güler, Z. Çobanoğlu, Pestisitler, İlköz Matbaası, Ankara, 1997.
  8. J.I. Nirmal Kumar, A. Bora, M.K. Amb, Chronic toxicity of the triazole fungicide tebuconazole on a heterocystous, nitrogenfixing rice paddy field cyanobacterium, Westiellopsis prolifica Janet, J. Microbiol. Biotechnol., 20 (2010) 1134–1139.
  9. M. Yıldız, O. Gürkan, C. Turgut, Ü. Kaya, G. Ünal, Tarımsal Savaşımda Kullanılan Pestisitlerin Yol Açtığı Çevre Sorunları, VI. Türkiye Ziraat Mühendisliği Teknik Kongresi, TMMOB Ziraat Mühendisleri Odası, Ankara, 2005.
  10. M. Crane, I. Johnson, N. Sorokin, C. Atkinson, S.J. Hope, Proposed EQS for Water Framework Directive Annex VIII Substances: Cypermethrin, Environment Agency, Bristol, 2007.
  11. E. Dražević, K. Košutić, S. Fingler, V. Drevenkar, Removal of pesticides from the water and their adsorption on the reverse osmosis membranes of defined porous structure, Desal. Water Treat., 30 (2011) 161–170.
  12. H.G. Peterson, C. Boutin, P.A. Martin, K.E. Freemark, N.J. Ruecker, M.J. Moody, Aquatic phytotoxicity of 23 pesticides applied at expected environmental concentrations, Aquat. Toxicol., 28 (1994) 275–292.
  13. J.G. Cuppen, P.J. Van den Brink, H. Van der Woude, N. Zwaardemaker, T.C. Brock, Sensitivity of macrophytedominated freshwater microcosms to chronic levels of the herbicide linuron, Ecotoxicol. Environ. Saf., 38 (1997) 25–35.
  14. J.B. Velázquez-Fernández, A.B. Martínez-Rizo, M. Ramírez- Sandoval, D. Domínguez-Ojeda, Biodegradation and Bioremediation of Organic Pesticides, R.P. Soundararajan, Ed., Pesticides - Recent Trends in Pesticide Residue Assay, IntechOpen, 2012, pp. 253–272. Available at: https://www. assay/biodegradation-and-bioremediation-of-organicpesticides
  15. D.E. Salt, R.D. Smith, I. Raskin, Phytoremediation, Annu. Rev. Plant Physiol., 49 (1998) 643–668.
  16. L.A. Licht, J.G. Isebrands, Linking phytoremediated pollutant removal to biomass economic opportunities, Biomass Bioenergy, 28 (2005) 203–218.
  17. H. Qian, W. Chen, G.D. Sheng, X. Xu, W. Liu, Z. Fu, Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris, Aquat. Toxicol., 88 (2008) 301–307.
  18. H.A. Jenner, J.P. Janssen-Mommen, Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments, Arch. Environ. Contam. Toxicol., 25 (1993) 3–11.
  19. S.M. Mackenzie, S. Waite, D.J. Metcalfe, C.B. Joyce, Landfill leachate ecotoxicity experiments using Lemna minor, Water Air Soil Pollut., 3 (2003) 171–179.
  20. M.A. Lewis, Use of freshwater plants for phytotoxicity testing: a review, Environ. Pollut., 87 (1995) 319–336.
  21. R. Dosnon-Olette, P. Trotel-Aziz, M. Couderchet, P. Eullaffroy, Fungicides and herbicide removal in Scenedesmus cell suspensions, Chemosphere, 79 (2010) 117–123.
  22. Z.P. Jin, K. Luo, S. Zhang, Q. Zheng, H. Yang, Bioaccumulation and catabolism of prometryne in green algae, Chemosphere, 87 (2012) 278–284.
  23. V. Matamoros, Y. Rodríguez, Batch vs. continuous-feeding operational mode for the removal of pesticides from agricultural run-off by microalgae systems: a laboratory scale study, J. Hazard. Mater., 309 (2016) 126–132.
  24. R. Olette, M. Couderchet, S. Biagianti, P. Eullaffroy, Toxicity and removal of pesticides by selected aquatic plants, Chemosphere, 70 (2008) 1414–1421.
  25. R. Dosnon-Olette, M. Couderchet, P. Eullaffroy, Phytoremediation of fungicides by aquatic macrophytes: toxicity and removal rate, Ecotoxicol. Environ. Saf., 72 (2009) 2096–2101.
  26. A.R. Wahaab, H.J. Lubberding, G.J. Alaerts, Copper and chromium(III) uptake by duckweed, Water Sci. Technol., 32 (1995) 105–110.
  27. M.A. Kähkönen, P.K. Manninen, The uptake of nickel and chromium from water by Elodea canadensis at different nickel and chromium exposure levels, Chemosphere, 36 (1998) 1381–1390.
  28. EFSA (European Food Safety Authority), Conclusion regarding the peer review of the pesticide risk assessment of the active substance zeta‐cypermethrin, EFSA Sci. Rep., 196 (2008) 1–119.
  29. A. Wood, Compendium of Pesticide Common Names Database, 2018. Available at: html
  30. T. Källqvist, N. Nyholm, Freshwater Alga and Cyanobacteria: Growth Inhibition Test: Draft Revised Guideline 201, OECD Guidelines for Testing of Chemicals-Proposal for Updating Guideline 201, 2002.
  31. OECD, OECD Guidelines for the Testing of Chemicals: 221 - Lemna sp. Growth Inhibition Test, Section 2, 1–22, 2006.
  32. B.B. Fischer, R.I.L. Eggen, A. Trebst, A. Krieger-Liszkay, The glutathione peroxidase homologous gene Gpxh in Chlamydomonas reinhardtii is upregulated by singlet oxygen produced in photosystem II, Planta, 223 (2006) 583–590.
  33. M. Bergmann, R.H. Peters, A simple reflectance method for the measurement of particulate pigment in lake water and its application to phosphorus-chlorophyll-seston relationships, Can. J. Fish. Aquat. Sci., 37 (1980) 111–114.
  34. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Water Works Association (AWWA) and the Water Environment Federation, Washington, DC, 1998.
  35. D.R. Hoagland, D.I. Arnon, The Water-Culture Method for Growing Plants Without Soil, California Agricultural Experiment Station, Circular-347, 1950.
  36. H.K. Lichtenthaler, A.R. Wellburn, Determination of total carotenoids and chlorophylls a and b of leaf in different solvents, Biochem. Soc. Trans., 11 (1985) 591–592.
  37. AOAC, Association of Analytical Chemists, Official Methods of Analysis, 16th ed., Washington, DC, 1995.
  38. N.R. Yadav, S. Sharma, Toxic effect of organophosphate, pyrethroids and organochlorine pesticides on Spirulina platensis growth rate, Int. J. Sci. Res., 2 (2013) 286–287.
  39. E. Agathokleous, M, Kitao, H. Harayama, E.J. Calabrese, Temperature-induced hormesis in plants, J. For. Res., 30 (2019) 13–20.
  40. A.R.D. Stebbing, A mechanism for hormesis-a problem in the wrong discipline, Crit. Rev. Toxicol., 33 (2003) 463–467.
  41. M.P. Mattson, Hormesis defined, Ageing Res. Rev., 7 (2008) 1–7.
  42. E.J. Calabrese, M.P. Mattson, How does hormesis impact biology, toxicology, and medicine?, NPJ Aging Mech. Dis., 3 (2017) 1–8, doi: 10.1038/s41514-017-0013-z.
  43. N. Saul, K. Pietsch, S.R. Stürzenbaum, R. Menzel, C.E. Steinberg, Hormesis and longevity with tannins: free of charge or cost-intensive?, Chemosphere, 93 (2013) 1005–1008.
  44. C.J. Zhu, Y. Peng, Z.H. Tong, L.Y. Lu, Y.H. Cui, H.Q. Yu, Hormetic effect and mechanism of imidazolium-based ionic liquids on the nematode Caenorhabditis elegans, Chemosphere, 157 (2016) 65–70.
  45. V. Echavarri-Bravo, L. Paterson, T.J. Aspray, J.S. Porter, M.K. Winson, M.G.J. Hartl, Natural marine bacteria as model organisms for the hazard-assessment of consumer products containing silver nanoparticles, Mar. Environ. Res., 130 (2017) 293–302.
  46. N. Cedergreen, J.C. Streibig, P. Kudsk, S.K. Mathiassen, S.O. Duke, The occurrence of hormesis in plants and algae, Dose Response, 5 (2007) 150–162.
  47. A.K. Çetin, N. Mert, Growth rate of Scenedesmus acutus (Meyen) in cultures exposed to trifluralin, Pol. J. Environ. Stud., 15 (2006) 631–633.
  48. Z. Fırat, A.K. Çetin, Effect of dichlorvos on growth of Scenedesmus acutus, J. Appl. Biol. Sci., 3 (2009) 41–43.
  49. N. Ağırman, B. Bedil, G. Kendirlioğlu, A.K. Çetin, Toxic effects of fungicides (penconazole and triadimenol) on growth and protein amount of Scenedesmus acutus, J. Chem. Soc. Pak., 37 (2015) 1220–1225.
  50. J. Ma, Differential sensitivity of three cyanobacterial and five green algal species to organotins and pyrethroids pesticides, Sci. Total Environ., 341 (2005) 109–117.
  51. J. Ma, W. Liang, Acute toxicity of 12 herbicides to the green algae Chlorella pyrenoidosa and Scenedesmus obliquus, Bull. Environ. Contam. Toxicol., 67 (2001) 347–351.
  52. T. Cáceres, M. Megharaj, R. Naidu, Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp., Sci. Total Environ., 398 (2008) 53–59.
  53. A.K. Çetin, N. Gur, Z. Fırat, Growth rate of Scenedesmus acutus in laboratory cultures exposed to diazinon, Afr. J. Biotechnol., 10 (2011) 6540–6543.
  54. B. Tsai, The Fate of Glyphosate in Water Hyacinth and Its Physiological and Biochemical Influences on Growth of Algae, North Carolina State University, Raleigh, NC, 1989.
  55. A. Fargašová, The effects of organotin compounds on growth, respiration rate, and chlorophyll a content of Scenedesmus quadricauda, Ecotoxicol. Environ. Saf., 37 (1997) 193–198.
  56. R. Prado, C. Rioboo, C. Herrero, A. Cid, Characterization of cell response in Chlamydomonas moewusii cultures exposed to the herbicide paraquat: Induction of chlorosis, Aquat. Toxicol., 102 (2011) 10–17.
  57. S. Kumar, K. Habib, T. Fatma, Endosulfan induced biochemical changes in nitrogen-fixing cyanobacteria, Sci. Total Environ., 403 (2008) 130–138.
  58. A.N. Kabra, M.K. Ji, J. Choi, J.R. Kim, S.P. Govindwar, B.H. Jeon, Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana, Environ. Sci. Pollut. Res., 21 (2014) 12270–12278.
  59. R.R.M. Thengodkar, S. Sivakami, Degradation of chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis, Biodegradation, 21 (2010) 637–644.
  60. L. Migliore, S. Cozzolino, M. Fiori, Phytotoxicity to and uptake of enrofloxacin in crop plants, Chemosphere, 52 (2003) 1233–1244.
  61. E. Kielak, C. Sempruch, H. Mioduszewska, J. Klocek, B. Leszczyński, Phytotoxicity of roundup ultra 360 SL in aquatic ecosystems: biochemical evaluation with duckweed (Lemna minor L.) as a model plant, Pestic. Biochem. Physiol., 99 (2011) 237–243.
  62. H. Wu, X. Miao, Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels, Bioresour. Technol., 170 (2014) 421–427.
  63. N. Ağırman, A.K. Çetin, Effects of nitrogen starvations on cell growth, protein and lipid amount of Chlorella vulgaris, Fresenius Environ. Bull., 24 (2015) 3643–3648.
  64. E. Pilon-Smits, Phytoremediation, Annu. Rev. Plant Biol., 56 (2005) 15–39.
  65. T.G. Luan, J. Jin, S.M. Chan, Y.S. Wong, N.F. Tam, Biosorption and biodegradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris beads in several treatment cycles, Process Biochem., 41 (2006) 1560–1565.
  66. I. Priyadarshani, D. Sahu, B. Rath, Microalgal bioremediation: current practices and perspectives, J. Biochem. Technol., 3 (2011) 299–304.
  67. E. Üçüncü, E. Tunca, Ş. Fikirdeşici, A. Altındağ, Decrease and increase profile of Cu, Cr and Pb during stable phase of removal by duckweed (Lemna minor L.), Int. J. Phytorem., 15 (2013) 376–384.
  68. E. Üçüncü Tunca, T.T. Ölmez, A.D. Özkan, A. Altındağ, E. Tunca, T. Tekinay, Correlations in metal release profiles following sorption by Lemna minor, Int. J. Phytoremed., 18 (2016) 785–793.
  69. E. Üçüncü, A.D. Özkan, C. Kurşungöz, Z.E. Ülger, T.T. Ölmez, T. Tekinay, B. Ortaç, E. Tunca, Effects of laser ablated silver nanoparticles on Lemna minor, Chemosphere, 108 (2014) 251–257.
  70. T.L. Chacón‐Lee, G.E. González‐Mariño, Microalgae for “healthy” foods-possibilities and challenges, Compr. Rev. Food. Sci. Food Saf., 9 (2010) 655–675.
  71. H. He, J. Yu, G. Chen, W. Li, J. He, H. Li, Acute toxicity of butachlor and atrazine to freshwater green alga Scenedesmus obliquus and cladoceran Daphnia carinata, Ecotoxicol. Environ. Saf., 80 (2012) 91–96.
  72. F.M. Li, Z. Liang, X. Zheng, W. Zhao, M. Wu, Z.Y. Wang, Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production, Aquat. Toxicol., 158 (2015) 1–13.
  73. S. Du, P. Zhang, R. Zhang, Q. Lu, L. Liu, X. Bao, H. Liu, Reduced graphene oxide induces cytotoxicity and inhibits photosynthetic performance of the green alga Scenedesmus obliquus, Chemosphere, 164 (2016) 499–507.