1. D. Maiti, I. Ansari, M.A. Rather, A. Deepa, Comprehensive review on wastewater discharged from the coal-related industries - characteristics and treatment strategies, Water Sci. Technol., 79 (2019) 2023–2035.
  2. J. Jegan, S. Praveen, T. Bhagavathi Pushpa, R. Gokulan, Sorption kinetics and isotherm studies of cationic dyes using groundnut (Arachis hypogaea) shell derived biochar a low-cost adsorbent, Appl. Ecol. Environ. Res., 18 (2020) 1925–1939.
  3. L. Zhang, Y. Zeng, Z. Cheng, Removal of heavy metal ions using chitosan and modified chitosan: a review, J. Mol. Liq., 214 (2016) 175–191.
  4. T. Bhagavathi Pushpa, J. Vijayaraghavan, S.J. Sardhar Basha, V. Sekaran, K. Vijayaraghavan, J. Jegan, Investigation on removal of malachite green using EM based compost as adsorbent, Ecotoxicol. Environ. Saf., 118 (2015) 177–182.
  5. G. Ravindiran, G.P. Ganapathy, J. Josephraj, A. Alagumalai, A critical insight into biomass derived biosorbent for bioremediation of dyes, ChemistrySelect, 4 (2019) 9762–9775.
  6. B. Pushpa T, J. Josephraj, P. Saravanan, G. Ravindran, Biodecolorization of basic blue 41 using EM based composts: isotherm and kinetics, ChemistrySelect, 4 (2019) 10006–10012.
  7. S. Praveen, T. Bhagavathi Pushpa, R. Gokulan, J. Jegan, Evaluation of the adsorption capacity of Cocos nucifera shell derived biochar for basic dyes sequestration from aqueous solution, Energy Sources Part A, (2020), doi: 10.1080/15567036.2020.1800142.
  8. M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J., 308 (2017) 438–462.
  9. E. Vunain, A.K. Mishra, B.B. Mamba, Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review, Int. J. Biol. Macromol., 86 (2016) 570–586.
  10. A.T. Ojedokun, O.S. Bello, Sequestering heavy metals from wastewater using cow dung, Water Resour. Ind., 13 (2016) 7–13.
  11. S. Srivastava, S.B. Agrawal, M.K. Mondal, A review on progress of heavy metal removal using adsorbents of microbial and plant origin, Environ. Sci. Pollut. Res., 22 (2015) 15386–15415.
  12. A. Tripathi, M. Rawat Ranjan, Heavy metal removal from wastewater using low cost adsorbents, J. Biorem. Biodegrad., 6 (2015) 1–5, doi: 10.4172/2155–6199.1000315.
  13. A. Ahmad, J.A. Siddique, M.A. Laskar, R. Kumar, S.H. Mohd- Setapar, A. Khatoon, R.A. Shiekh, New generation Amberlite XAD resin for the removal of metal ions: a review, J. Environ. Sci., 31 (2015) 104–123.
  14. T. Babatunde Ibigbami, Removal of heavy metals from pharmaceutical industrial wastewater effluent by combination of adsorption and chemical precipitation methods, Am. J. Appl. Chem., 4 (2016) 24–32.
  15. T. Bhagavathi Pushpa, J. Vijayaraghavan, K. Vijayaraghavan, J. Jegan, Utilization of effective microorganisms based water hyacinth compost as biosorbent for the removal of basic dyes, Desal. Water Treat., 57 (2016) 24368–24377.
  16. R. Gokulan, G. Ganesh Prabhu, J. Jegan, A novel sorbent Ulva lactuca-derived biochar for remediation of Remazol Brilliant Orange 3R in packed column, Water Environ. Res., 91 (2019) 642–649.
  17. J. Jegan, S. Praveen, T.B. Pushpa, R. Gokulan, Biodecolorization of Basic Violet 03 using biochar derived from agricultural wastes: isotherm and kinetics, J. Biobased Mater. Bioenergy, 14 (2020) 316–326.
  18. S. Siddiquee, K. Rovina, S. Al Azad, Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review, J. Microb. Biochem. Technol., 7 (2015) 384–393.
  19. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review, J. Hazard. Mater., 211 (2012) 317–331.
  20. M. Fawzy, M. Nasr, S. Adel, S. Helmi, Regression model, artificial neural network, and cost estimation for biosorption of Ni(II)-ions from aqueous solutions by Potamogeton pectinatus, Int. J. Phytorem., 20 (2018) 321–329.
  21. N. Suganthy, S.A. Nisha, S.K. Pandian, K.P. Devi, Evaluation of Gelidiella acerosa, the red algae inhabiting South Indian coastal area for antioxidant and metal chelating potential, Biomed. Prev. Nutr., 3 (2013) 399–406.
  22. M.J. Ahmed, P.U. Okoye, E.H. Hummadi, B.H. Hameed, Highperformance porous biochar from the pyrolysis of natural and renewable seaweed (Gelidiella acerosa) and its application for the adsorption of methylene blue, Bioresour. Technol., 278 (2019) 159–164.
  23. M. Jamshidi, J. Keramat, N. Hamdami, O. Farhadian, Optimization of protein extraction from Gelidiella acerosa by carbohydrases using response surface methodology, Phycol. Res., 66 (2018) 231–237.
  24. R. Gokulan, G.G. Prabhu, J. Jegan, Remediation of complex remazol effluent using biochar derived from green seaweed biomass, Int. J. Phytorem., 21 (2019) 1179–1189.
  25. R. Gokulan, A. Avinash, G.G. Prabhu, J. Jegan, Remediation of remazol dyes by biochar derived from Caulerpa scalpelliformis - an eco-friendly approach, J. Environ. Chem. Eng., 7 (2019) 103297, doi: 10.1016/j.jece.2019.103297.
  26. R. Gokulan, G. Ganesh Prabhu, A. Avinash, J. Jegan, Experimental and chemometric analysis of bioremediation of remazol dyes using biochar derived from green seaweeds, Desal. Water Treat., 184 (2020) 340–353.
  27. A.M. Afzaal, Kinetics, isotherms and thermodynamics of heavy metal ions sorption onto raw and agro-based magnetic biosorbent, Res. Adv. Environ. Sci., 1 (2018) 27–42.
  28. J. Jegan, J. Vijayaraghavan, T. Bhagavathi Pushpa, S.J. Sardhar Basha, Application of seaweeds for the removal of cationic dye from aqueous solution, Desal. Water Treat., 57 (2016) 25812–25821.
  29. P. Senthil Kumar, S. Ramalingam, R.V. Abhinaya, K.V. Thiruvengadaravi, P. Baskaralingam, S. Sivanesan, Lead(II) adsorption onto sulphuric acid treated cashew nut shell, Sep. Sci. Technol., 46 (2011) 2436–2449.
  30. D. Rangnani, R.K. Tak, Bio sorption of manganese(II) ions from aqueous solution by dry biomass of lantana camara, Int. J. Green Herb. Chem., 6 (2017), 96–103.
  31. J. Thivya, J. Vijayaraghavan, Single and binary sorption of reactive dyes onto red seaweed-derived biochar: multicomponent isotherm and modelling, Desal. Water Treat., 156 (2019) 87–95.
  32. G.Z. Kyzas, M. Kostoglou, N.K. Lazaridis, D.N. Bikiaris, N-(2-Carboxybenzyl) grafted chitosan as adsorptive agent for simultaneous removal of positively and negatively charged toxic metal ions, J. Hazard. Mater., 244 (2013) 29–38.
  33. W.S. Linghu, C. Wang, Adsorption of heavy metal ions from aqueous solution by chitosan, Adv. Mater. Res., 881 (2014) 570–573.
  34. C. Ortiz-Calderon, H.C. Silva, D.B. Vásquez, Metal removal by seaweed biomass, J.S. Tumuluru, Ed., Biomass Volume Estimation and Valorization for Energy, IntechOpen, 2017. Available at:
  35. J. Vijayaraghavan, T. Bhagavathi Pushpa, S.J. Sardhar Basha, J. Jegan, Isotherm, kinetics and mechanistic studies of methylene blue biosorption onto red seaweed Gracilaria corticata, Desal. Water Treat., 57 (2015) 13540–13548.
  36. J. Thivya, J. Vijayaraghavan, Experimental and mathematical modelling of cationic dye sorption in up-flow packed column using Gracilaria corticata, Desal. Water Treat., 167 (2019) 333–339.
  37. B.S. Journal, Lettuce leaves as biosorbent material to remove heavy metal ions from industrial wastewater, Baghdad Sci. J., 11 (2014) 1164–1170.
  38. G. Neeraj, S. Krishnan, P. Senthil Kumar, K.R. Shriaishvarya, V. Vinoth Kumar, Performance study on sequestration of copper ions from contaminated water using newly synthesized high effective chitosan coated magnetic nanoparticles, J. Mol. Liq., 214 (2016) 335–346.
  39. J. Vijayaraghavan, T. Bhagavathi Pushpa, S.J. Sardhar Basha, K. Vijayaraghavan, J. Jegan, Evaluation of red marine alga Kappaphycus alvarezii as biosorbent for methylene blue: isotherm, kinetic, and mechanism studies, Sep. Sci. Technol., 50 (2014) 1120–1126.
  40. T.A. Khan, S.A. Chaudhry, I. Ali, Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution, J. Mol. Liq., 202 (2015) 165–175.
  41. I. Langmuir, The constitution and fundamental properties of solids and liquids. II. Liquids, J. Am. Chem. Soc., 39 (1916) 1900–1950.
  42. H.M.F. Freundlich, Adsorption in solution, Z. Phys. Chem., 57 (1906) 385–471.
  43. O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 10 (1960) 1024, doi: 10.1021/j150576a611.
  44. R. Sips, On the structure of a catalyst surface, J. Chem. Phys., 16 (1948) 490–495.
  45. S. Sagar, A. Rastogi, Evaluation of equilibrium isotherms and kinetic parameters for the adsorption of methyl orange dye onto blue green algal biomass, Asian J. Chem., 31 (2019) 1501–1508.
  46. J. Ayorinde, J.E. Osula, Isotherm, kinetic and thermodynamic studies of Pb(II) and nickel ions removal from aqueous solution using locally sourced bio-adsorbent, Int. J. Mater. Sci. Eng., 7 (2019) 67–80.
  47. S.S. Shukla, L.J. Yu, K. Dorris, A. Shukla, Removal of nickel from aqueous solutions by sawdust, J. Hazard. Mater., 121 (2005) 243–246.
  48. F.T. Ademiluyi, E.O. David-West, Effect of chemical activation on the adsorption of heavy metals using activated carbons from waste materials, ISRN Chem. Eng., 2002 (2012) 1–5, doi: 10.5402/2012/674209.
  49. G. Vázquez, G. Antorrena, J. González, M.D. Doval, Adsorption of heavy metal ions by chemically modified Pinus pinaster bark, Bioresour. Technol., 48 (1994) 251–255.
  50. B.C. Qi, C. Aldrich, Biosorption of heavy metals from aqueous solutions with tobacco dust, Bioresour. Technol., 99 (2008) 5595–5601.
  51. M. Iqbal, A. Saeed, I. Kalim, Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent, Sep. Sci. Technol., 44 (2009) 3770–3791.
  52. G. Annadurai, R.S. Juang, D.J. Lee, Adsorption of heavy metals from water using banana and orange peels, Water Sci. Technol., 47 (2003) 185–190.
  53. A. Saeed, M. Iqbal, Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum), Water Res., 37 (2003) 3472–3480.
  54. K. Wilson, H. Yang, C.W. Seo, W.E. Marshall, Select metal adsorption by activated carbon made from peanut shells, Bioresour. Technol., 97 (2006) 2266–2270.
  55. R.R. Bansode, J.N. Losso, W.E. Marshall, R.M. Rao, R.J. Portier, Adsorption of metal ions by pecan shell-based granular activated carbons, Bioresour. Technol., 89 (2003) 115–119.
  56. M.M. Rahman, M. Adil, A.M. Yusof, Y.B. Kamaruzzaman, R.H. Ansary, Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells, Materials, 60 (1994) 177–182.
  57. P. Brown, I. Atly Jefcoat, D. Parrish, S. Gill, E. Graham, Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution, Adv. Environ. Res., 4 (2000) 19–29.
  58. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Application of response surface methodology (RSM) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+removal from aqueous solution using microwaved olive stone activated carbon, J. Chem. Technol. Biotechnol., 88 (2013) 2141–2151.
  59. E.I. El-Shafey, M. Cox, A.A. Pichugin, Q. Appleton, Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution, J. Chem. Technol. Biotechnol., 77 (2002) 429–436.
  60. S.R. Shukla, R.S. Pai, Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres, Bioresour. Technol., 96 (2005) 1430–1438.
  61. M.A. Hossain, H.H. Ngo, W.S. Guo, L.D. Nghiem, F.I. Hai, S. Vigneswaran, T.V. Nguyen, Competitive adsorption of metals on cabbage waste from multi-metal solutions, Bioresour. Technol., 160 (2014) 79–88.
  62. V. Boonamnuayvitaya, C. Chaiya, W. Tanthapanichakoon, S. Jarudilokkul, Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay, Sep. Purif. Technol., 35 (2004) 11–22.
  63. S.H. Gharaibeh, W.Y. Abu-El-Sha’r, M.M. Al-Kofahi, Removal of selected heavy metals from aqueous solutions using processed solid residue of olive mill products, Water Res., 32 (1998) 498–502.
  64. J.H. Park, Y.S. Ok, S.H. Kim, J.S. Cho, J.S. Heo, R.D. Delaune, D.C. Seo, Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions, Chemosphere, 142 (2016) 77–83.
  65. M. Adeli, Y. Yamini, M. Faraji, Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples, Arabian J. Chem., 28 (1993) 1261–1276.
  66. D. Kołodyńska, J. Krukowska, P. Thomas, Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon, Chem. Eng. J., 307 (2017) 353–363.
  67. A.A.H. Faisal, S.F.A. Al-Wakel, H.A. Assi, L.A. Naji, M. Naushad, Waterworks sludge-filter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater, J. Water Process Eng., 33 (2020) 1–11, doi: 10.1016/j.jwpe.2019.101112.
  68. A. Mittal, M. Naushad, G. Sharma, Z.A. Alothman, S.M. Wabaidur, M. Alam, Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium, Desal. Water Treat., 57 (2015) 21863–21869.
  69. M. Naushad, Z.A. ALOthman, Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation, Desal. Water Treat., 53 (2013) 2158–2166.
  70. M. Naushad, Z.A. ALothman, M.R. Awual, M.M. Alam, G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger, Ionics, 21 (2015) 2237–2245.
  71. K. Vijayaraghavan, U.M. Joshi, S. Kamala-Kannan, An attempt to develop seaweed-based treatment technology for the remediation of complex metal-bearing laboratory wastewaters, Ecol. Eng., 47 (2012) 278–283.
  72. K. Vijayaraghavan, U.M. Joshi, R. Balasubramanian, Removal of metal ions from storm-water runoff by low-cost sorbents: batch and column studies, J. Environ. Eng., 136 (2010) 1113–1118.
  73. M.M. Areco, S. Hanela, J. Duran, M. dos Santos Afonso, Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation, J. Hazard. Mater., 213–214 (2012) 123–132.
  74. A. Leusch, Z.R. Holan, B. Volesky, Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically reinforced biomass of marine algae, J. Chem. Technol. Biotechnol., 62 (1995) 279–288.
  75. F. Veglió, F. Beolchini, A. Gasbarro, Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp., Process Biochem., 32 (1997) 99–105.
  76. M.M. Montazer-Rahmati, P. Rabbani, A. Abdolali, A.R. Keshtkar, Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae, J. Hazard. Mater., 185 (2011) 401–407.
  77. O.M.M. Freitas, R.J.E. Martins, C.M. Delerue-Matos, R.A.R. Boaventura, Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: kinetic modelling, J. Hazard. Mater., 153 (2008) 493–501.
  78. P. Pavasant, R. Apiratikul, V. Sungkhum, P. Suthiparinyanont, S. Wattanachira, T.F. Marhaba, Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera, Bioresour. Technol., 97 (2006) 2321–2329.
  79. G. Ravindiran, R.M. Jeyaraju, J. Josephraj, A. Alagumalai, Comparative desorption studies on remediation of remazol dyes using biochar (sorbent) derived from green marine seaweeds, ChemistrySelect, 4 (2019) 7437–7445.