References

  1. B. Nowack, T.D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment, Environ. Pollut., 150 (2007) 5–22.
  2. T.Y. Sun, F. Gottschalk, K. Hungerbühler, B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut., 185 (2014) 69–76.
  3. A.A. Keller, A. Lazareva, Predicted releases of engineered nanomaterials: from global to regional to local, Environ. Sci. Technol., 1 (2013) 65–70.
  4. K. Jia, C. Sun, Y. Wang, X. Li, W. Mu, Y. Fan, Effect of TiO2 nanoparticles and multiwall carbon nanotubes on the freshwater diatom Nitzschia frustulum: evaluation of growth, cellular components and morphology, Chem. Ecol., 35 (2018) 69–85.
  5. S. Liu, P. Zeng, X. Li, D.Q. Thuyet, W. Fan, Effect of chronic toxicity of the crystalline forms of TiO2 nanoparticles on the physiological parameters of Daphnia magna with a focus on index correlation analysis, Ecotoxicol. Environ. Saf., 181 (2019) 292–300.
  6. S. Hu, J. Han, L. Yang, S. Li, Y. Guo, B. Zhou, H. Wu, Impact of co-exposure to titanium dioxide nanoparticles and Pb on zebrafish embryos, Chemosphere, 233 (2019) 579–589.
  7. Z.G. Peng, K. Hidajat, M.S. Uddin, Adsorption of bovine serum albumin on nanosized magnetic particles, J. Colloid Interface Sci., 271 (2004) 277–283.
  8. J. Hu, G. Chen, I.M. Lo, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles, Water Res., 39 (2005) 4528–4536.
  9. J. Lee, H.W. Walker, Adsorption of microcystin-Lr onto iron oxide nanoparticles, Colloids Surf., A, 373 (2011) 94–100.
  10. Y. Zhang, Y. Chen, P. Westerhoff, J. Crittenden, Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles, Water Res., 43 (2009) 4249–4257.
  11. F. Loosli, P. Le Coustumer, S. Stoll, TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids pH and concentration effects on nanoparticle stability, Water Res., 47 (2013) 6052–6063.
  12. D. Palomino, S. Stoll, Fulvic acids concentration and pH influence on the stability of hematite nanoparticles in aquatic systems, J. Nanopart. Res., 15 (2013) 1428.
  13. D.A. Pelletier, A.K. Suresh, G.A. Holton, C.K. McKeown, W. Wang, B. Gu, N.P. Mortensen, D.P. Allison, D.C. Joy, M.R. Allison, S.D. Brown, T.J. Phelps, M.J. Doktycz, Effects of engineered cerium oxide nanoparticles on bacterial growth and viability, Appl. Environ. Microbiol., 76 (2010) 7981–7989.
  14. P.S. Li M, Jin X, Mädler L, Damoiseaux R, Hoek EM, Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media, Environ. Sci. Technol., 45 (2011) 755–761.
  15. A.A. Keller, S. McFerran, A. Lazareva, S. Suh, Global life cycle releases of engineered nanomaterials, J. Nanopart. Res., 15 (2013) 1692.
  16. A.A. Keller, H. Wang, D. Zhou, H.S. Lenihan, G. Cherr, B.J. Cardinale, R. Miller, Z. Ji, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices, Environ. Sci. Technol., 44 (2010) 1962–1967.
  17. H.N. Kim, S.L. Walker, Escherichia coli O157:H7 transport in saturated porous media: role of solution chemistry and surface macromolecules, Environ. Sci. Technol., 43 (2009) 4340–4347.
  18. B.J. Thio, D. Zhou, A.A. Keller, Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles, J. Hazard. Mater., 189 (2011) 556–563.
  19. M.B. Romanello, M.M. Fidalgo de Cortalezzi, An experimental study on the aggregation of TiO2 nanoparticles under environmentally relevant conditions, Water Res., 47 (2013) 3887–3898.
  20. Y. Li, C. Yang, X. Guo, Z. Dang, X. Li, Q. Zhang, Effects of humic acids on the aggregation and sorption of nano-TiO2, Chemosphere, 119 (2015) 171–176.
  21. A. Sheng, F. Liu, N. Xie, J. Liu, Impact of proteins on aggregation kinetics and adsorption ability of hematite nanoparticles in aqueous dispersions, Environ. Sci. Technol., 50 (2016) 2228–2235.
  22. A. Omoike, J. Chorover, Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: aqueous chemistry and adsorption effects, Biomacromolecules, 5 (2004) 1219–1230.
  23. F. Loosli, P. Le Coustumer, S. Stoll, Effect of electrolyte valency, alginate concentration and pH on engineered TiO2 nanoparticle stability in aqueous solution, Sci. Total Environ., 535 (2015) 28–34.
  24. B. Cao, L. Shi, R.N. Brown, Y. Xiong, J.K. Fredrickson, M.F. Romine, M.J. Marshall, M.S. Lipton, H. Beyenal, Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics, Environ. Microbiol., 13 (2011) 1018–1031.
  25. A. Omoike, J. Chorover, Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis, Geochim. Cosmochim., 70 (2006) 827–838.
  26. A.S. Adeleye, A.A. Keller, Long-term colloidal stability and metal leaching of single wall carbon nanotubes: effect of temperature and extracellular polymeric substances, Water Res., 49 (2014) 236–250.
  27. H. Xu, H. Jiang, Effects of cyanobacterial extracellular polymeric substances on the stability of ZnO nanoparticles in eutrophic shallow lakes, Environ. Pollut., 197 (2015) 231–239.
  28. A. Kroll, R. Behra, R. Kaegi, L. Sigg, Extracellular polymeric substances (EPS) of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles, PLoS One, 9 (2014) e110709.
  29. D.C. Huram, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR, J. Phys. Chem. B, 107 (2003) 4545–4549.
  30. L.Y. Ren, Z.N. Hong, W. Qian, J.Y. Li, R.K. Xu, Adsorption mechanism of extracellular polymeric substances from two bacteria on ultisol and alfisol, Environ. Pollut., 237 (2018) 39–49.
  31. D. Lin, S. Drew Story, S.L. Walker, Q. Huang, P. Cai, Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles, Water Res., 104 (2016) 381–388.
  32. K.L. Chen, M. Elimelech, Aggregation and deposition kinetics of fullerene (C60) nanoparticles, Langmuir, 26 (2006) 10994–11001.
  33. K.L. Chen, M. Elimelech, Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions, J. Colloid Interface Sci., 309 (2007) 126–134.
  34. X. Huangfu, J. Jiang, J. Ma, Y. Liu, J. Yang, Aggregation kinetics of manganese dioxide colloids in aqueous solution: influence of humic substances and biomacromolecules, Environ. Sci. Technol., 47 (2013) 10285–10292.
  35. M. Hudlikar, S. Joglekar, M. Dhaygude, K. Kodam, Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex, Mater. Lett., 75 (2012) 196–199.
  36. G.V. Khade, M.B. Suwarnkar, N.L. Gavade, K.M. Garadkar, Green synthesis of TiO2 and its photocatalytic activity, J. Mater. Sci. - Mater. Electron., 26 (2015) 3309–3315.
  37. X. Li, M. Yoneda, Y. Shimada, Y. Matsui, Effect of surfactants on the aggregation and stability of TiO2 nanomaterial in environmental aqueous matrices, Sci. Total Environ., 574 (2017) 176–182.
  38. X. Liu, M. Wazne, Y. Han, C. Christodoulatos, K.L. Jasinkiewicz, Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes, J. Colloid Interface Sci., 348 (2010) 101–107.
  39. Y. Xiang, Y. Liu, B. Mi, Y. Leng, Molecular dynamics simulations of polyamide membrane, calcium alginate gel, and their interactions in aqueous solution, Langmuir, 30 (2014) 9098–9106.