1. L. Fan, M.Y. Zhou, J.W. Wang, X.L. Li, C.W. Ma, Dewatering performance of sewage sludge during the thermal compression process, Adv. Mater. Res., 878 (2014) 657–662.
  2. M. Kacprzak, E. Neczaj, K. Fijalkowski, A. Grobelak, A. Grosser, M. Worwąg, A. Rorat, H. Brattebø, Å. Almås, B. Singh, Sewage sludge disposal strategies for sustainable development, Environ. Res., 156 (2017) 39–46.
  3. M. Ali, Q. Huang, B. Lin, B. Hu, F. Wang, Y. Chi, The effect of hydrolysis on combustion characteristics of sewage sludge and leaching behavior of heavy metals, Environ. Technol., 39 (2017) 2632–2640.
  4. P. Das, S. Khan, M. AbdulQuadir, M. Thaher, M. Waqas, A. Easa, E.S.M. Attia, H. Al-Jabri, Energy recovery and nutrients recycling from municipal sewage sludge, Sci. Total Environ., 715 (2020) 136775.1–136775.9, doi: 10.1016/j.scitotenv.2020.136775.
  5. J. Jimenez, F. Vedrenne, C. Denis, A. Mottet, S. Déléris, J. Steyer, J.A. Cacho Rivero, A statistical comparison of protein and carbohydrate characterisation methodology applied on sewage sludge samples, Water Res., 47 (2013) 1751–1762.
  6. Y. Chen, S. Jiang, H. Yuan, Q. Zhou, G. Gu, Hydrolysis and acidification of waste activated sludge at different pHs, Water Res., 41 (2007) 683–689.
  7. D.C. Devlin, S.R.R. Esteves, R.M. Dinsdale, A.J. Guwy, The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge, Bioresour. Technol., 102 (2011) 4076–4082.
  8. C. Eskicioglu, K.J. Kennedy, R.L. Droste, Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment, Water Res., 40 (2006) 3725–3736.
  9. M.C. Gagliano, A. Gallipoli, S. Rossetti, C. Braguglia, Efficacy of methanogenic biomass acclimation in mesophilic anaerobic digestion of ultrasound pretreated sludge, Environ. Technol., 39 (2017) 1–25.
  10. L. Dominique, V. Dossat-Létisse, X. Lefebvre, E. Girbal- Neuhauser, Fate of organic matter during moderate heat treatment of sludge: kinetics of biopolymer and hydrolytic activity release and impact on sludge reduction by anaerobic digestion, Water Sci. Technol., 69 (2014) 1828–1833.
  11. W. Sun, H. Zhu, Y. Sun, L. Chen, Y. Xu, H. Zheng, Enhancement of waste-activated sludge dewaterability using combined Fenton pre-oxidation and flocculation process, Desal. Water Treat., 126 (2018) 314–323.
  12. F. Steffen, R. Janzon, B. Saake, Enzymatic treatment of deinking sludge – effect on fibre and drainage properties, Environ. Technol., 39 (2017) 1–38.
  13. Q. Deng, Y. Huang, P. Xian, T. Li, S. He, Q. Liu, Optimization of thermo-alkaline pretreatment on municipal sludge and enhanced subsequent anaerobic digestion, Desal. Water Treat., 148 (2019) 88–94.
  14. W. Su, B. Tang, F. Fu, S. Huang, S. Zhao, L. Bin, J. Ding, C. Chen, A new insight into resource recovery of excess sewage sludge: feasibility of extracting mixed amino acids as an environmentfriendly corrosion inhibitor for industrial pickling, J. Hazard. Mater., 279 (2014) 38–45.
  15. E. Neyens, J. Baeyens, M. Weemaes, B. De Heyder, Hot acid hydrolysis as a potential treatment of thickened sewage sludge, J. Hazard. Mater., 98 (2003) 275–293.
  16. T. Assawamongkholsiri, A. Reungsang, S. Pattra, Effect of acid, heat and combined acid-heat pretreatments of anaerobic sludge on hydrogen production by anaerobic mixed cultures, Int. J. Hydrogen Energy, 38 (2013) 6146–6153.
  17. Y. Xiang, Y. Xiang, L. Wang, Z. Zhang, Optimization of foaming properties of sludge protein solution by 60Co γ-ray/H2O2 using response surface methodology, Radiat. Phys. Chem., 127 (2016) 249–255.
  18. C. Wang, H. Liang, Y. Li, J. Hua, Study on preparation of foam extinguishing agent using excess sludge, China Water Wastewater, 22 (2006) 38–42 (in Chinese).
  19. A. Shanableh, S. Jomaa, Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment, Water Sci. Technol., 44 (2001) 129–135.
  20. M. Corzo-Martínez, F.J. Moreno, M. Villamiel, J.M. Rodríguez Patino, C. Carrera Sánchez, Effect of glycation and limited hydrolysis on interfacial and foaming properties of bovine β-lactoglobulin, Food Hydrocolloids, 66 (2017) 16–26.
  21. C. Van der Ven, H. Gruppen, D.B.A. De Bont, A.G.J. Voragen, Correlations between biochemical characteristics and foam-forming and -stabilizing ability of whey and casein hydrolysates, J. Agric. Food Chem., 50 (2002) 2938–2946.
  22. R. Ipsen, J. Otte, R. Sharma, A. Nielsen, L. Gram Hansen, K. Bruun Qvist, Effect of limited hydrolysis on the interfacial rheology and foaming properties of β-lactoglobulin A, Colloids Surf., B, 21 (2001) 173–178.
  23. V. Rahali, J.M. Chobert, T. Haertlé, J. Guéguen, Emulsification of chemical and enzymatic hydrolysates of β-lactoglobulin: characterization of the peptides adsorbed at the interface, Food Nahrung, 44 (2000) 89–95.
  24. C. Larré, W. Mulder, R. Sánchez-Vioque, J. Lazko, S. Bérot, J. Guéguen, Y. Popineau, Characterisation and foaming properties of hydrolysates derived from rapeseed isolate, Colloids Surf., B, 49 (2006) 40–48.
  25. E.A. Foegeding, P.J. Luck, J.P. Davis, Factors determining the physical properties of protein foams, Food Hydrocolloids, 20 (2006) 284–292.
  26. Y. Yan, H. Chen, W. Xu, Q. He, Q. Zhou, Enhancement of biochemical methane potential from excess sludge with low organic content by mild thermal pretreatment, Biochem. Eng. J., 70 (2013) 127–134.
  27. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, DC, 1998.
  28. R. Manchala, B. Narasinga Rao, Determination of dipeptides in peptide mixtures using a simple biuret method, Ind. J. Biochem. Biophys., 20 (1983) 149–153.
  29. H. Rosen, A modified ninhydrin colorimetric analysis for amino acids, Arch. Biochem. Biophys., 67 (1957) 10–15.
  30. P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Measurement of protein using bicinchoninic acid, Anal. Biochem., 150 (1985) 76–85.
  31. J.P. Wang, S.J. Yuan, Y. Wang, H.Q. Yu, Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties, Water Res., 47 (2013) 2643–2648.
  32. P. Li, F. Deng, H. Zhu, S. Guan, S. Huang, Study of a complex protein foaming agent from disintegrated brewery sludge supernatant, Desal. Water Treat., 95 (2017) 200–207.
  33. Y. Xue, H. Liu, S. Chen, N. Dichtl, X. Dai, N. Li, Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge, Chem. Eng. J., 264 (2015) 174–180.
  34. J. Sun, L. Guo, Q. Li, Y. Zhao, M. Gao, Z. She, G. Wang, Structural and functional properties of organic matters in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) after heat pretreatment with waste sludge, Bioresour. Technol., 219 (2016) 614–623.
  35. A. Val Del Río, N. Morales, E. Isanta, A. Mosquera-Corral, J.L. Campos, J.P. Steyer, H. Carrère, Thermal pre-treatment of aerobic granular sludge: impact on anaerobic biodegradability, Water Res., 45 (2011) 6011–6020.
  36. C.A. Wilson, J.T. Novak, Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment, Water Res., 43 (2009) 4489–4498.
  37. R. Liu, X. Yu, P. Yu, X. Guo, B. Zhang, B. Xiao, New insights into the effect of thermal treatment on sludge dewaterability, Sci. Total Environ., 656 (2019) 1082–1090.
  38. M. Raynaud, J. Vaxelaire, J. Olivier, E. Dieudé-Fauvel, J. Baudez, Compression dewatering of municipal activated sludge: Effects of salt and pH, Water Res., 46 (2012) 4448–4456.
  39. Y. Chen, Y. Chen, G. Gu, Influence of pretreating activated sludge with acid and surfactant prior to conventional conditioning on filtration dewatering, Chem. Eng. J., 99 (2004) 137–143.
  40. X. Liu, J. Wang, E. Liu, T. Yang, R. Li, Y. Sun, Municipal sludge dewatering properties and heavy metal distribution: effects of surfactant and hydrothermal treatment, Sci. Total Environ., 710 (2019) 136346.1–136346.10, doi: 10.1016/j.scitotenv.2019.136346.
  41. D. Ge, H. Yuan, J. Xiao, N. Zhu, Insight into the enhanced sludge dewaterability by tannic acid conditioning and pH regulation, Sci. Total Environ., 679 (2019) 298–306.
  42. D. Lu, F. Sun, Y. Zhou, Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment, Bioresour. Technol., 266 (2018) 60–67.
  43. J. Dwyer, D. Starrenburg, S. Tait, K. Barr, D.J. Batstone, P. Lant, Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability, Water Res., 42 (2008) 4699–4709.
  44. J. Geng, K. Takahashi, T. Kaido, M. Kasukawa, E. Okazaki, K. Osako, Relationship among pH, generation of free amino acids, and Maillard browning of dried Japanese common squid Todarodes pacificus meat, Food Chem., 283 (2019) 324–330.
  45. Y. Chen, H. Yang, G. Gu, Effect of acid and surfactant treatment on activated sludge dewatering and settling, Water Res., 35 (2001) 2615–2620.
  46. S.Y. Jeong, S.W. Chang, H.H. Ngo, W. Guo, L.D. Nghiem, J.R. Banu, B. Jeon, D.D. Nguyen, Influence of thermal hydrolysis pretreatment on physicochemical properties and anaerobic biodegradability of waste activated sludge with different solids content, Waste Manage., 85 (2019) 214–221.
  47. E. Dickinson, Surface and emulsifying properties of caseins, J. Dairy Res., 56 (1989) 471–477.