References

  1. M. Wakeel, B. Chen, T. Hayat, A. Alsaedi, B. Ahmad, Energy consumption for water use cycles in different countries: a review, Appl. Energy, 178 (2016) 868–885.
  2. N. Voutchkov, Energy use for membrane seawater desalination – current status and trends, Desalination, 431 (2018) 2–14.
  3. R.K. McGovern, On the potential of forward osmosis to energetically outperform reverse osmosis desalination, J. Membr. Sci., 469 (2014) 245–250.
  4. A. Shrivastava, S. Rosenberg, M. Peery, Energy efficiency breakdown of reverse osmosis and its implications on future innovation roadmap for desalination, Desalination, 368 (2015) 181–192.
  5. J. Kim, S. Hong, A novel single-pass reverse osmosis configuration for high-purity water production and low energy consumption in seawater desalination, Desalination, 429 (2018) 142–154.
  6. N. Ghaffour, The challenge of capacity-building strategies and perspectives for desalination for sustainable water use in MENA, Desal. Water Treat., 5 (2009) 48–53.
  7. J.R. Werber, A. Deshmukh, M. Elimelech, The critical need for increased selectivity, not increased water permeability, for desalination membranes, Environ. Sci. Technol. Lett., 3 (2016) 112–120.
  8. P.C. Milly, K.A. Dunne, A.V. Vecchia, Global pattern of trends in streamflow and water availability in a changing climate, Nature, 438 (2005) 347–350.
  9. V. Ramanathan, Y. Feng, Air pollution, greenhouse gases and climate change: global and regional perspectives, Atmos. Environ., 43 (2009) 37–50.
  10. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-water-environment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  11. J.T. Kim, J.-H. Choe, J.-S. Kim, D. Seo, Y.D. Kim, K.H. Chung, Graphene-based plasmonic waveguide devices for electronicphotonic integrated circuit, Opt. Laser Technol., 106 (2018) 76–86.
  12. S.G. Rothausen, D. Conway, Greenhouse-gas emissions from energy use in the water sector, Nat. Clim. Change, 1 (2011) 210–219.
  13. J. Kim, K. Park, D.R. Yang, S. Hong, A comprehensive review of energy consumption of seawater reverse osmosis desalination plants, Appl. Energy, 254 (2019), doi: 10.1016/j. apenergy.2019.113652.
  14. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  15. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges, Water Res., 43 (2009) 2317–2348.
  16. N. Ghaffour, S. Lattemann, T. Missimer, K.C. Ng, S. Sinha, G. Amy, Renewable energy-driven innovative energy-efficient desalination technologies, Appl. Energy, 136 (2014) 1155–1165.
  17. A. Drak, M. Adato, Energy recovery consideration in brackish water desalination, Desalination, 339 (2014) 34–39.
  18. V.G. Gude, Energy storage for desalination processes powered by renewable energy and waste heat sources, Appl. Energy, 137 (2015) 877–898.
  19. C.F. Wan, T.-S. Chung, Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes, Appl. Energy, 162 (2016) 687–698.
  20. R. Tariq, N.A. Sheikh, J. Xamán, A. Bassam, An innovative air saturator for humidification-dehumidification desalination application, Appl. Energy, 228 (2018) 789–807.
  21. N. Voutchkov, Desalination Engineering: Planning and Design, McGraw Hill Professional, 2012.
  22. J.L. Prante, J.A. Ruskowitz, A.E. Childress, A. Achilli, RO-PRO desalination: an integrated low-energy approach to seawater desalination, Appl. Energy, 120 (2014) 104–114.
  23. R.S. El-Emam, I. Dincer, Thermodynamic and thermoeconomic analyses of seawater reverse osmosis desalination plant with energy recovery, Energy, 64 (2014) 154–163.
  24. A. Al-Zahrani, J. Orfi, Z. Al-Suhaibani, B. Salim, H. Al-Ansary, Thermodynamic analysis of a reverse osmosis desalination unit with energy recovery system, Procedia Eng., 33 (2012) 404–414.
  25. A. Farooque, A. Jamaluddin, A.R. Al-Reweli, P. Jalaluddin, S. Al-Marwani, A. Al-Mobayed, A. Qasim, Comparative Study of Various Energy Recovery Devices Used in SWRO Process, Saline Water Desalination Research Institute, Saline Water Conversion Corporation (SWCC), Al-Jubail, Saudi Arabia, 2004.
  26. A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization, Wiley, New York, NY, 1996.
  27. A. Malek, M. Hawlader, J. Ho, Design and economics of RO seawater desalination, Desalination, 105 (1996) 245–261.
  28. R. Turton, R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz, Analysis, Synthesis and Design of Chemical Processes, Pearson Education, Upper Saddle River, NJ, 2008.
  29. S. Rahimi, M. Meratizaman, S. Monadizadeh, M. Amidpour, Techno-economic analysis of wind turbine–PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area, Energy, 67 (2014) 381–396.
  30. H.A. Reyhani, M. Meratizaman, A. Ebrahimi, O. Pourali, M. Amidpour, Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification, Energy, 107 (2016) 141–164.
  31. M.A. Jamil, B.A. Qureshi, S.M. Zubair, Exergo-economic analysis of a seawater reverse osmosis desalination plant with various retrofit options, Desalination, 401 (2017) 88–98.
  32. I. Dincer, M.A. Rosen, P. Ahmadi, Optimization of Energy Systems, Wiley, New York, 2017.
  33. M. Goedkoop, R. Spriensma, S. Effting, M. Collignon, The Eco-indicator 99: A Damage Oriented Method for Lifecycle Impact Assessment: Manual for Designers, PRé, Product Ecology Consultants, 2000.
  34. E.J.C. Cavalcanti, Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system, Renewable Sustainable Energy Rev., 67 (2017) 507–519.
  35. G. Raluy, L. Serra, J. Uche, Life cycle assessment of MSF, MED and RO desalination technologies, Energy, 31 (2006) 2361–2372.
  36. B. Holmatov, A. Hoekstra, M. Krol, Land, water and carbon footprints of circular bioenergy production systems, Renewable Sustainable Energy Rev., 111 (2019) 224–235.
  37. A. Demirbas, Political, economic and environmental impacts of biofuels: a review, Appl. Energy 86 (2009) S108–S117.
  38. G.P. Hammond, B. Li, Environmental and resource burdens associated with world biofuel production out to 2050: footprint components from carbon emissions and land use to waste arisings and water consumption, Gcb Bioenergy, 8 (2016) 894–908.
  39. H. Alderson, G.R. Cranston, G.P. Hammond, Carbon and environmental footprinting of low carbon UK electricity futures to 2050, Energy, 48 (2012) 96–107.
  40. D. Gupta, S.K. Gaur, Carbon and biofuel footprinting of global production of biofuels, Biomass Biopolym. Based Mater. Bioenergy, (2019) 449–481, https://doi.org/10.1016/ B978-0-08-102426-3.00019-9.
  41. R.W. Howarth, R. Santoro, A. Ingraffea, Methane and the greenhouse-gas footprint of natural gas from shale formations, Clim. Change, 106 (2011) 679, doi: 10.1007/s10584-011-0061-5.