References

  1. M. Henze, M.C. Van Loosdrecht, G.A. Ekama, D. Brdjanovic, Biological Wastewater Treatment, IWA Publishing, London, 2008.
  2. P. Rajasulochana, V. Preethy, Comparison on efficiency of various techniques in treatment of waste and sewage water–a comprehensive review, Resour. Effic. Technol., 2 (2016) 175–184.
  3. K.V. Gernaey, M.C. Van Loosdrecht, M. Henze, M. Lind, S.B. Jørgensen, Activated sludge wastewater treatment plant modelling and simulation: state of the art, Environ. Modell. Softw., 19 (2004) 763–783.
  4. F. Jung, M. Cammarota, D.M.G. Freire, Impact of enzymatic pre-hydrolysis on batch activated sludge systems dealing with oily wastewaters, Biotechnol. Lett., 24 (2002) 1797–1802.
  5. A. Pala, E. Tokat, Color removal from cotton textile industry wastewater in an activated sludge system with various additives, Water Res., 36 (2002) 2920–2925.
  6. G.T. Tellez, N. Nirmalakhandan, J.L. Gardea-Torresdey, Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water, Adv. Environ. Res., 6 (2002) 455–470.
  7. S. Aslan, B. Alyüz, Z. Bozkurt, M. Bakaoglu, Characterization and biological treatability of edible oil wastewaters, Pol. J. Environ. Stud., 18 (2009) 533–538.
  8. P. Côté, H. Buisson, M. Praderie, Immersed membranes activated sludge process applied to the treatment of municipal wastewater, Water Sci. Technol., 38 (1998) 437–442.
  9. E. Loupasaki, E. Diamadopoulos, Attached growth systems for wastewater treatment in small and rural communities: a review, J. Chem. Technol., 88 (2013) 190–204.
  10. H.A. Mokhtari, S.A. Mirbagheri, N. Gisoo, M. Ehteshami, Investigation and modelling of a hybrid petroleum refinery wastewater treatment system using neural networks, Desal. Water Treat., 198 (2020) 108–118.
  11. H.A. Mokhtari, M. Bagheri, S.A. Mirbagheri, A. Akbari, Performance evaluation and modelling of an integrated municipal wastewater treatment system using neural networks, Water Environ. J., (2020), https://doi.org/10.1111/wej.12565 (in Press).
  12. S.J. You, C.L. Hsu, S.H. Chuang, C.F. Ouyang, Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems, Water Res., 37 (2003) 2281–2290.
  13. Y. Zaoyan, S. Ke, S. Guangliang, Y. Fan, D. linshan, M. Huanian, Anaerobic–aerobic treatment of a dye wastewater by combination of RBC with activated sludge, Water Sci. Technol., 26 (1992) 2093–2096.
  14. F. Gebara, Activated sludge biofilm wastewater treatment system, Water Res., 33 (1999) 230–238.
  15. J. Su, C.F. Ouyang, Nutrient removal using a combined process with activated sludge and fixed biofilm, Water Sci. Technol., 34 (1996) 477–486.
  16. Y.K. Park, C.H. Lee, Dyeing wastewater treatment by activated sludge process with a polyurethane fluidized bed biofilm, Water Sci. Technol., 34 (1996) 193–200.
  17. D. Di Trapani, M. Christensson, M. Torregrossa, G. Viviani, H. Ødegaard, Performance of a hybrid activated sludge/biofilm process for wastewater treatment in a cold climate region: influence of operating conditions, Biochem. Eng. J., 77 (2013) 214–219.
  18. L. Zhang, M. Liu, S. Zhang, Y. Yang, Y. Peng, Integrated fixed-biofilm activated sludge reactor as a powerful tool to enrich anammox biofilm and granular sludge, Chemosphere, 140 (2015) 114–118.
  19. C.L.A. Mass, W.J. Parker, R.L. Legge, Detachment of solids and nitrifiers in integrated, fixed-film activated sludge systems, Water Environ. Res., 80 (2008) 2202–2208.
  20. A. Gjaltema, L. Tijhuis, M. Van Loosdrecht, J.J. Heijnen, Detachment of biomass from suspended nongrowing spherical biofilms in airlift reactors, Biotechnol. Bioeng., 46 (1995) 258–269.
  21. M. Bagheri, K. Al-jabery, D. Wunsch, J.G. Burken, Examining plant uptake and translocation of emerging contaminants using machine learning: implications to food security, Sci. Total Environ., 698 (2020) 133999.
  22. M. Bagheri, K. Al-jabery, D.C. Wunsch, J.G. Burken, A deeper look at plant uptake of environmental contaminants using intelligent approaches, Sci. Total Environ., 651 (2019) 561–569.
  23. S. Mirbagheri, M. Bagheri, M. Ehteshami, Z. Bagheri, M. Pourasghar, Modeling of mixed liquor volatile suspended solids and performance evaluation for a sequencing batch reactor, J. Urban Environ. Eng., 9 (2015) 54–65.
  24. M. Bagheri, A. Akbari, S.A. Mirbagheri, Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review, Process Saf. Environ., 123 (2019) 229–252.
  25. L. Rossi, M. Bagheri, W. Zhang, Z. Chen, J.G. Burken, X. Ma, Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants, Environ. Pollut., 246 (2019) 381–389.
  26. Y. Yang, K. Tsukahara, S. Sawayama, Performance and methanogenic community of rotating disk reactor packed with polyurethane during thermophilic anaerobic digestion, Mater. Sci. Eng., 27 (2007) 767–772.
  27. P.S. Kodukula, T. Prakasam, A.C. Anthonisen, Role of pH in Biological Wastewater Treatment Processes: Physiological Models in Microbiology, CRC Press, Boca Raton, Florida, 2018, pp. 113–135.
  28. American Public Health Association and American Water Works Association, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 1015 Fifteenth Street, NW Washington, DC 20005, 1989.
  29. S.S. Haykin, Neural Networks and Learning Machines/Simon Haykin, Prentice Hall, New York, 2009.
  30. M. Kubat, Artificial Neural Networks: An Introduction to Machine Learning, Springer, Cham, Switzerland, 2015, pp. 91–111.
  31. Z.H. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell., 137 (2002) 239–263.
  32. R. Soleimani, N.A. Shoushtari, B. Mirza, A. Salahi, Experimental investigation, modeling and optimization of membrane separation using artificial neural network and multi-objective optimization using genetic algorithm, Chem. Eng. Res. Des., 91 (2013) 883–903.
  33. U.S. Environmental Protection Agency, National Recommended Water Quality Criteria-Correction, EPA 822-Z-99–001, 1999.
  34. S. Schwede, A. Anbalagan, I. Krustok, C.-F. Lindberg, E. Nehrenheim, Evaluation of the Microalgae-Based Activated Sludge (MAAS) Process for Municipal Wastewater Treatment on Pilot Scale, IWA World Water Congress, Brisbane, Australia, 09–13 October 2016.
  35. M.V. Sperling, V.H. Freire, C.A. de Lemos Chernicharo, Performance evaluation of a UASB-activated sludge system treating municipal wastewater, Water Sci. Technol., 43 (2001) 323–328.
  36. H. Guven, H. Ozgun, M.E. Ersahin, R.K. Dereli, I. Sinop, I. Ozturk, High-rate activated sludge processes for municipal wastewater treatment: the effect of food waste addition and hydraulic limits of the system, Environ. Sci. Pollut. Res., 26 (2019) 1770–1780.
  37. P. Jin, B. Li, D. Mu, X. Li, Y. Peng, High-efficient nitrogen removal from municipal wastewater via two-stage nitritation/ anammox process: long-term stability assessment and mechanism analysis, Bioresour. Technol., 271 (2019) 150–158.
  38. Q. Chen, J. Ni, T. Ma, T. Liu, M. Zheng, Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR, Bioresour. Technol., 183 (2015) 25–32.
  39. A. Sarti, B.S. Fernandes, M. Zaiat, E. Foresti, Anaerobic sequencing batch reactors in pilot-scale for domestic sewage treatment, Desalination, 216 (2007) 174–182.
  40. X.J. Wang, S.Q. Xia, L. Chen, J.F. Zhao, N.J Renault, J.M. Chovelon, Nutrients removal from municipal wastewater by chemical precipitation in a moving bed biofilm reactor, Process Biochem., 41 (2006) 824–828.
  41. S. Yang, F. Yang, Z. Fu, T. Wang, R. Lei, Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment, J. Hazard. Mater., 175 (2010) 551–557.
  42. M. Bagheri, S.A. Mirbagheri, Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater, Bioresour. Technol., 258 (2018) 318–334.
  43. S. Gonzalez, M. Petrovic, D. Barcelo, Removal of a broad range of surfactants from municipal wastewater–comparison between membrane bioreactor and conventional activated sludge treatment, Chemosphere, 67 (2007) 335–343.
  44. S.A. Hannah, B.M. Austern, A.E. Eralp, R.A. Dobbs, Removal of organic toxic pollutants by trickling filter and activated sludge, J. Water Pollut. Control Fed., 60 (1988) 1281–1283.
  45. C. Cagnetta, B. Saerens, F.A. Meerburg, S.O. Decru, E. Broeders, W. Menkveld, T.G.L. Vandekerckhove, J.D. Vrieze, S.E. Vlaeminck, A.R.D. Verliefde, B.D. Gusseme, M. Weemaes, K. Rabaey, High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery, Bioresour. Technol., 291 (2019) 121833.
  46. P. Torres, E. Foresti, Domestic sewage treatment in a pilot system composed of UASB and SBR reactors, Water Sci. Technol., 44 (2001) 247–253.
  47. M. Guida, M. Mattei, C. Della Rocca, G. Melluso, S. Meriç, Optimization of alum-coagulation/flocculation for COD and TSS removal from five municipal wastewater, Desalination, 211 (2007) 113–127.
  48. G. Seo, B. Moon, T. Lee, T. Lim, I.S. Kim, Non-woven fabric filter separation activated sludge reactor for domestic wastewater reclamation, Water Sci. Technol., 47 (2003) 133–138.
  49. N.K. Singh, A.A. Kazmi, Environmental performance and microbial investigation of a single stage aerobic integrated fixed-film activated sludge (IFAS) reactor treating municipal wastewater, J. Environ. Chem. Eng., 4 (2016) 2225–2237.
  50. Q. Wang, Q. Chen, Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic–oxic process without internal recycle treating low strength wastewater, J. Environ. Sci., 39 (2016) 175–183.
  51. Y. Rahimi, A. Torabian, N. Mehrdadi, B. Shahmoradi, Simultaneous nitrification–denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR), J. Hazard. Mater., 185 (2011) 852–857.
  52. S. Lin, K.W. Cheng, A new sequencing batch reactor for treatment of municipal sewage wastewater for agricultural reuse, Desalination, 133 (2001) 41–51.
  53. A. Zinatizadeh, E. Ghaytooli, Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR): process modeling and optimization, J. Taiwan Inst. Chem. Eng., 53 (2015) 98–111.
  54. T. El Moussaoui, A. Kessraoui, N. Ouazzani, M. Seffen, L. Mandi, Synthetic urban wastewater treatment by an activated sludge reactor: evolution of bacterial biomass and purifying efficiency, J. Mater. Environ. Sci., 9 (2018) 817–827.
  55. S. Shivaranjani, L.M. Thomas, Performance study for treatment of institutional wastewater by activated sludge process, Int. J. Civil Eng., 8 (2017) 376–382.
  56. T.W. Li, Y.Z. Peng, Y.Y. Wang, G.B. Zhu, W.Q. Chi, G.W. Gu, Experimental study on sequencing batch biofilm reactor with biological filtration (SBBR-BF) for wastewater treatment, Water Sci. Technol., 48 (2004) 299–307.
  57. S. Ahmed, H. Abdelhalim, E. Rozaik, Treatment of primary settled wastewater using anaerobic sequencing batch reactor seeded with activated EM, Civil Environ. Res., 3 (2013) 130–136.
  58. A.A. Bukhari, Investigation of the electro-coagulation treatment process for the removal of total suspended solids and turbidity from municipal wastewater, Bioresour. Technol., 99 (2008) 914–921.
  59. L. Wu, J. Wang, X. Liu, Enhanced nitrogen removal under low-temperature and high-load conditions by optimization of the operating modes and control parameters in the CAST system for municipal wastewater, Desal. Water Treat., 53 (2015) 1683–1698.
  60. Y.Y. Wang, Z.X. Zhang, M. Yan, N.Y. Gao, J. Yang, M.H. Ren, Impact of operating conditions on nitrogen removal using cyclic activated sludge technology (CAST), J. Environ. Sci. Health A, 45 (2010) 370–376.
  61. C. Wei, X. Huang, X. Wen, Pilot study on municipal wastewater treatment by a modified submerged membrane bioreactor, Water Sci. Technol., 53 (2006) 103–110.
  62. A. Valipour, S.M. TAghvaeie, V.K. Raman, G.B. Gholikhandi, S. Jamshidi, N. Hamnabard, An approach on attached growth process for domestic wastewater treatment, Environ. Eng. Manage. J., 13 (2014) 145–152.
  63. R. Moore, J. Quarmby, T. Stephenson, The effects of media size on the performance of biological aerated filters, Water Res., 35 (2001) 2514–2522.
  64. A. Giwa, S. Daer, I. Ahmed, P. Marpu, S. Hasan, Experimental investigation and artificial neural networks ANNs modeling of electrically-enhanced membrane bioreactor for wastewater treatment, J. Water Process Eng., 11 (2016) 88–97.
  65. A.R. Pendashteh, A. Fakhru’l-Razi, N. Chaibakhsh, L.C. Abdullah, S.S. Madaeni, Z.Z. Abidin, Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network, J. Hazard. Mater., 192 (2011) 568–575.
  66. H. Gong, R. Pishgar, J. Tay, Artificial neural network modelling for organic and total nitrogen removal of aerobic granulation under steady-state condition, Environ. Technol., 40 (2019) 3124–3139.