References

  1. I. Bashir, F.A. Lone, R.A. Bhat, S.A. Mir, Z.A. Dar, S.A. Dar, Concerns and Threats of Contamination on Aquatic Ecosystems, K. Hakeem, R. Bhat, H. Qadri, Eds., Bioremediation and Biotechnology, Springer, Cham, 2020, pp. 1–26.
  2. N. Ferronato, V. Torretta, Waste mismanagement in developing countries: a review of global issues, Int. J. Environ. Res. Public Health, 16 (2019) 1060, doi: 10.3390/ijerph16061060.
  3. K.S. Kuppusamy, M. Priya, Biologial treatment of AZO dyes and textile industry effluent by newly isolated white ROT fungi Schizophyllum commune and Lenzites eximia, Int. J. Environ. Sci., 2 (2012) 1938–1947.
  4. P. Malik, Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics, J. Hazard. Mater., 113 (2004) 81–88.
  5. B. Zargar, H. Parham, M. Rezazade, Fast removal and recovery of methylene blue by activated carbon modified with magnetic iron oxide nanoparticles, J. Chin. Chem. Soc., 58 (2011) 694–699.
  6. M. Vinuth, H.S.B. Naik, B.M. Vinoda, H. Gururaj, N. Thomas, G. Arunkumar, Enhanced removal of methylene blue dye in aqueous solution using eco-friendly Fe(III)–montmorillonite, Mater. Today: Proc., 4 (2017) 424–433.
  7. J. Zhang, M.S. Azam, C. Shi, J. Huang, B. Yan, Q. Liu, H. Zeng, Poly(acrylic acid) functionalized magnetic graphene oxide nanocomposite for removal of methylene blue, RSC Adv., 5 (2015) 32272–32282.
  8. M. Salehi, H. Hashemipour, M. Mirzaee, Experimental study of influencing factors and kinetics in catalytic removal of methylene blue with TiO2 nanopowder, Am. J. Environ. Eng., 2 (2012) 1–7.
  9. D. Balarak, T.J. Al-Musawi, I.A. Mohammed, H. Abasizadeh, The eradication of reactive black 5 dye liquid wastes using Azolla filiculoides aquatic fern as a good and an economical biosorption agent, SN Appl. Sci., 2 (2020) 1015, doi: 10.1007/s42452-020-2841-x.
  10. R. Liu, P. Lv, H. Fu, R. Lu, X. Wu, Y. Lu, Removal performance of methyl blue onto magnetic MgFe2O4 nanoparticles prepared via the rapid combustion process, J. Nanosci. Nanotechnol., 17 (2017) 4755–4762.
  11. H.M. Zwain, M. Vakili, I. Dahlan, Waste material adsorbents for zinc removal from wastewater: a comprehensive review, Int. J. Chem. Eng., 2014 (2014) 347912, doi: 10.1155/2014/347912.
  12. S. Das, J. Chakraborty, S. Chatterjee, H. Kumar, Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants, Environ. Sci. Nano, 5 (2018) 2784–2808.
  13. N. Nasseh, F.S. Arghavan, S. Rodriguez-Couto, A. Hossein Panahi, Synthesis of FeNi3/SiO2/CuS magnetic nano-composite as a novel adsorbent for Congo Red dye removal, Int. J. Environ. Anal. Chem., (2020) 1–21, doi: 10.1080/03067319.2020. 1754810 (in Press).
  14. T. Tatarchuk, N. Paliychuk, R. Babu Bitra, A. Shyichuk, M. Naushad, I. Mironyuk, D. Ziolkovska, Adsorptive removal of toxic Methylene Blue and Acid Orange 7 dyes from aqueous medium using cobalt-zinc ferrite nanoadsorbents, Desal. Water Treat., 150 (2019) 374–385.
  15. J. Wu, J. Bai, Z. Wang, Z. Liu, Y. Mao, B. Liu, X. Zhu, UV-assisted nitrogen-doped reduced graphene oxide/Fe3O4 composite activated peroxodisulfate degradation of norfloxacin, Environ. Technol., (2020) 1–12, doi: 10.1080/09593330.2020.1779353 (in press).
  16. S.S. Banerjee, D.-H. Chen, Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent, J. Hazard. Mater., 147 (2007) 792–799.
  17. M. Khodadadi, M. Ehrampoush, M. Ghaneian, A. Allahresani, A. Mahvi, Synthesis and characterizations of FeNi3@SiO2@ TiO2 nanocomposite and its application in photo-catalytic degradation of tetracycline in simulated wastewater, J. Mol. Liq., 255 (2018) 224–232.
  18. A.A. Alqadami, M. Naushad, Z.A. Alothman, A.A. Ghfar, Novel metal–organic framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment, ACS Appl. Mater. Interface, 9 (2017) 36026–36037.
  19. A.A. Alqadami, M. Naushad, M.A. Abdalla, M.R. Khan, Z.A. Alothman, Adsorptive removal of toxic dye using Fe3O4–TSC nanocomposite: equilibrium, kinetic, and thermodynamic studies, J. Chem. Eng. Data, 61 (2016) 3806–3813.
  20. N. Nasseh, L. Taghavi, B. Barikbin, M.A. Nasseri, Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater, J. Cleaner Prod., 179 (2018) 42–54.
  21. M.A. Nasseri, S.M. Sadeghzadeh, A highly active FeNi3–SiO2 magnetic nanoparticles catalyst for the preparation of 4H-benzo [b] pyrans and spirooxindoles under mild conditions, J. Iran. Chem. Soc., 10 (2013) 1047–1056.
  22. N. Nasseh, L. Taghavi, B. Barikbin, M.A. Nasseri, A. Allahresani, FeNi3/SiO2 magnetic nanocomposite as an efficient and recyclable heterogeneous Fenton-like catalyst for the oxidation of metronidazole in neutral environments: adsorption and degradation studies, Composites, Part B, 166 (2019) 328–340.
  23. T. Etemadinia, A. Allahrasani, B. Barikbin, ZnFe2O4@SiO2@ Tragacanth gum nanocomposite: synthesis and its application for the removal of methylene blue dye from aqueous solution, Polym. Bull., 76 (2019) 6089–6109.
  24. S.M. Seyed Arabi, R.S. Lalehloo, M.R.T.B. Olyai, G.A.M. Ali, H. Sadegh, Removal of congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes, Physica E, 106 (2019) 150–155.
  25. A.C. Martins, O. Pezoti, A.L. Cazetta, K.C. Bedin, D.A. Yamazaki, G.F. Bandoch, T. Asefa, J.V. Visentainer, V.C. Almeida, Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies, Chem. Eng. J., 260 (2015) 291–299.
  26. G. Moussavi, R. Khosravi, The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste, Chem. Eng. Res. Des., 89 (2011) 2182–2189.
  27. V.K. Gupta, S. Agarwal, H. Sadegh, G.A.M. Ali, A.K. Bharti, A.S. Hamdy Makhlouf, Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase, J. Mol. Liq., 237 (2017) 466–472.
  28. M. Kamranifar, M. Khodadadi, V. Samiei, B. Dehdashti, M.N. Sepehr, L. Rafati, N. Nasseh, Comparison the removal of reactive red 195 dye using powder and ash of barberry stem as a low cost adsorbent from aqueous solutions: isotherm and kinetic study, J. Mol. Liq., 255 (2018) 572–577.
  29. G. Moussavi, R. Khosravi, Removal of cyanide from wastewater by adsorption onto pistachio hull wastes: parametric experiments, kinetics and equilibrium analysis, J. Hazard. Mater., 183 (2010) 724–730.
  30. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  31. S. Agarwal, H. Sadegh, M. Monajjemi, A.S. Hamdy, G.A.M. Ali, A.O.H. Memar, R. Shahryari-Ghoshekandi, I. Tyagi, V.K. Gupta, Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol, J. Mol. Liq., 218 (2016) 191–197.
  32. Y. Khambhaty, K. Mody, S. Basha, B. Jha, Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger, Chem. Eng. J., 145 (2009) 489–495.
  33. H. Sadegh, G. Ali, Z. Khalifehlou, M. Nadagouda, Adsorption of ammonium ions onto multi-walled carbon nanotubes, Stud. Univ. Babes-Bolyai Chem., 62 (2017) 233–245.
  34. J.C. Morris, W.J. Weber Jr, Removal of Biologically-Resistant Pollutants from Wastewaters by Adsorption, Advances in Water Pollution Research, Vol. 2, Elsevier, Oxford, 1964, pp. 231–266.
  35. X. Li, Y. Liu, C. Zhang, T. Wen, L. Zhuang, X. Wang, G. Song, D. Chen, Y. Ai, T. Hayat, X. Wang, Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions, Chem. Eng. J., 336 (2018) 241–252.
  36. S. Karthikeyan, V. Gupta, R. Boopathy, A. Titus, G. Sekaran, A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies, J. Mol. Liq., 173 (2012) 153–163.
  37. Y. Jia, Y. Zhang, J. Fu, L. Yuan, Z. Li, C. Liu, D. Zhao, X. Wang, A novel magnetic biochar/MgFe-layered double hydroxides composite removing Pb2+ from aqueous solution: isotherms, kinetics and thermodynamics, Colloids Surf., A, 567 (2019) 278–287.
  38. N. Nasseh, T.J. Al-Musawi, M.R. Miri, S. Rodriguez-Couto, A. Hossein Panahi, A comprehensive study on the application of FeNi3@SiO2@ZnO magnetic nanocomposites as a novel photo-catalyst for degradation of tamoxifen in the presence of simulated sunlight, Environ. Pollut., 261 (2020) 114127, doi: 10.1016/j.envpol.2020.114127.
  39. M. Naushad, G. Sharma, Z. Alothman, Photodegradation of toxic dye using Gum Arabic-crosslinked-poly(acrylamide)/Ni(OH)2/FeOOH nanocomposites hydrogel, J. Cleaner Prod., 241 (2019) 118263, doi: 10.1016/j.jclepro.2019.118263.
  40. X. Ding, Y. Huang, J. Wang, H. Wu, P. Liu, Excellent electromagnetic wave absorption property of quaternary composites consisting of reduced graphene oxide, polyaniline and FeNi2@SiO2 nanoparticles, Appl. Surf. Sci., 357 (2015) 908–914.
  41. N. Nasseh, F.S. Arghavan, S. Rodriguez-Couto, A. Hossein Panahi, M. Esmati, T.J. A-Musawi, Preparation of activated carbon@ZnO composite and its application as a novel catalyst in catalytic ozonation process for metronidazole degradation, Adv. Powder. Technol., 31 (2020) 875–885.
  42. Z.L. Yaneva, N.V. Georgieva, Insights into Congo Red adsorption on agro-industrial materials - spectral, equilibrium, kinetic, thermodynamic, dynamic and desorption studies, a review, Int. Rev. Chem. Eng., 4 (2012) 127–146.
  43. Y. Sun, H. Li, G. Li, B. Gao, Q. Yue, X. Li, Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation, Bioresour. Technol., 217 (2016) 239–244.
  44. J.R. Kim, B. Santiano, H. Kim, E. Kan, Heterogeneous oxidation of methylene blue with surface-modified iron-amended activated carbon, Am. J. Anal. Chem., 4 (2013) 115–122.
  45. A. Seidmohammadi, G. Asgari, M. Leili, A. Dargahi, A. Mobarakian, Effectiveness of quercus branti activated carbon in removal of methylene blue from aqueous solutions, Arch. Hyg. Sci., 4 (2015) 217–225.
  46. R. Coşkun, A. Yıldız, A. Delibaş, Removal of methylene blue using fast sucking adsorbent, J. Mater. Environ. Sci., 8 (2017) 398–409.
  47. S. Wang, Q. Gao, W. Luo, J. Xu, C. Zhou, H. Xia, Removal of methyl blue from aqueous solution by magnetic carbon nanotube, Water Sci. Technol., 68 (2013) 665–673.
  48. J. Jang, H. Lim, Characterization and analytical application of surface modified magnetic nanoparticles, Microchem. J., 94 (2010) 148–158.
  49. R. Sahraei, Z.S. Pour, M. Ghaemy, Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: removal of heavy metals and dyes from water, J. Cleaner Prod., 142 (2017) 2973–2984.
  50. A. Wang, W. Wang, Gum-g-Copolymers: Synthesis, Properties, and Applications, S. Kalia, M.W. Sabaa, Eds., Polysaccharide Based Graft Copolymers, Springer, Berlin, Heidelberg, 2013, pp. 149–203.
  51. B. Mudyawabikwa, H.H. Mungondori, L. Tichagwa, D.M. Katwire, Methylene blue removal using a low-cost activated carbon adsorbent from tobacco stems: kinetic and equilibrium studies, Water Sci. Technol., 75 (2017) 2390–2402.
  52. S. Cheng, L. Zhang, H. Xia, J. Peng, J. Shu, C. Li, X. Jiang, Q. Zhang, Adsorption behavior of methylene blue onto wastederived adsorbent and exhaust gases recycling, RSC Adv., 7 (2017) 27331–27341.
  53. S. Hong, C. Wen, J. He, F. Gan, Y.-S. Ho, Adsorption thermodynamics of Methylene Blue onto bentonite, J. Hazard. Mater., 167 (2009) 630–633.
  54. N.G. Rincón-Silva, J.C. Moreno-Piraján, L.G. Giraldo, Thermodynamic study of adsorption of phenol, 4-chlorophenol, and 4-nitrophenol on activated carbon obtained from eucalyptus seed, J. Chem., 2015 (2015) 569403, doi: 10.1155/2015/569403.
  55. R. Tang, C. Dai, C. Li, W. Liu, S. Gao, C. Wang, Removal of methylene blue from aqueous solution using agricultural residue walnut shell: equilibrium, kinetic, and thermodynamic studies, J. Chem., 2017 (2017) 8404965, doi: 10.1155/2017/8404965.
  56. G. Asgari, A. Dargahi, S.A. Mobarakian, Equilibrium and synthetic equations for index removal of methylene blue using activated carbon from oak fruit bark, J. Mazandaran Univ. Med. Sci., 24 (2015) 172–187.
  57. M. Leili, B. Ramavandi, The efficiency evaluation of activated carbon prepared from date stones for removal of methylene blue dye from aqueous solutions, J. Sabzevar Univ. Med. Sci., 21 (2014) 502–513.
  58. V.K. Gupta, D. Pathania, N. Kothiyal, G. Sharma, Polyaniline zirconium(IV) silicophosphate nanocomposite for remediation of methylene blue dye from waste water, J. Mol. Liq., 190 (2014) 139–145.
  59. H.H. Abdel Ghafar, G.A.M. Ali, O.A. Fouad, S.A. Makhlouf, Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite, Desal. Water Treat., 53 (2015) 2980–2989.
  60. Z. Mohammadi, M. Sharif Zak, H. Majdi, K. Seidi, M. Barati, A. Akbarzadeh, A.M. Latifi, The effect of chrysin‐loaded nanofiber on wound healing process in male rat, Chem. Biol. Drug Des., 90 (2017) 1106–1114.
  61. A.M. Aljeboree, A.N. Alshirifi, A.F. Alkaim, Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon, Arabian J. Chem., 10 (2017) S3381–S3393.
  62. P.S. Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, S. Sivanesan, Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions, Desalination, 261 (2010) 52–60.
  63. Y.C. Sharma, Uma, Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon, J. Chem. Eng. Data, 55 (2010) 435–439.
  64. A.Z. Aroguz, J. Gulen, R.H. Evers, Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment, Bioresour. Technol., 99 (2008) 1503–1508.
  65. D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coir pith carbon, Bioresour. Technol., 98 (2007) 14–21.
  66. B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem, A. Addou, Methylene blue and iodine adsorption onto an activated desert plant, Bioresour. Technol., 99 (2008) 8441–8444.
  67. S. Cengiz, L. Cavas, Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea, Bioresour. Technol., 99 (2008) 2357–2363.
  68. G. Annadurai, R.-S. Juang, D.-J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions, J. Hazard. Mater., 92 (2002) 263–274.
  69. E. Daneshvar, A. Vazirzadeh, A. Niazi, M. Kousha, M. Naushad, A. Bhatnagar, Desorption of Methylene blue dye from brown macroalga: effects of operating parameters, isotherm study and kinetic modeling, J. Cleaner Prod., 152 (2017) 443–453.
  70. M. Naushad, M. Ali Khan, Z. Abdullah Alothman, M. Rizwan Khan, M. Kumar, Adsorption of methylene blue on chemically modified pine nut shells in single and binary systems: isotherms, kinetics, and thermodynamic studies, Desal. Water Treat., 57 (2016) 15848–15861.
  71. M. Naushad, A.A. Alqadami, Z.A. Alothman, I.H. Alsohaimi, M.S. Algamdi, A.M. Aldawsari, Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon, J. Mol. Liq., 293 (2019) 111442, doi: 10.1016/j.molliq.2019.111442.
  72. A.A. Alqadami, M. Naushad, Z.A. Alothman, T. Ahamad, Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism, J. Environ. Manage., 223 (2018) 29–36.
  73. F. Brouers, T.J. Al-Musawi, Brouers-Sotolongo fractal kinetics versus fractional derivative kinetics: a new strategy to analyze the pollutants sorption kinetics in porous materials, J. Hazard. Mater., 350 (2018) 162–168.
  74. H. Sadegh, G.A.M. Ali, S. Agarwal, V.K. Gupta, Surface modification of MWCNTs with carboxylic-to-amine and their superb adsorption performance, Int. J. Environ. Res., 13 (2019) 523–531.
  75. B. Maazinejad, O. Mohammadnia, G.A.M. Ali, A.S.H. Makhlouf, M.N. Nadagouda, M. Sillanpää, A.M. Asiri, S. Agarwal, V.K. Gupta, H. Sadegh, Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics, J. Mol. Liq., 298 (2020) 112001, doi: 10.1016/j. molliq.2019.112001.