1. M. Usman, E. Salama, M. Aif, B. Jeon, X. Kaili, Determination of the inhibitory concentration level of fat, oil, and grease (FOG) towards bacterial and archaeal communities in anaerobic digestion, Renewable Sustainable Energy Rev., 131 (2020) 110032–110043.
  2. C. Gurd, R. Villa, B. Jefferson, Understanding why fat, oil and grease (FOG) bioremediation can be unsuccessful, J. Environ. Manage., 267 (2020) 110647–110657.
  3. M. Víctor-Ortega, J.M. Ochando-Pulido, G. Hodaifa, A. Martinez-Ferez, Final purification of synthetic olive oil mill wastewater treated by chemical oxidation using ion exchange: study of operating parameters, Chem. Eng. Process., 85 (2014) 241–247.
  4. M. Stoller, J.M. Ochando-Pulido, G. Vilardi, Technical and economic impact of photocatalysis as a pretreatment process step in olive mill wastewater treatment by membranes, Chem. Eng. Trans., 57 (2017) 1171–1176.
  5. K. Yuney, A.A. Oladipo, M. Gazi, CuO coated olive cake nanocomposites for rapid phenol removal and effective discoloration of high strength olive mill wastewater, Chemosphere, 253 (2020) 126703–126713.
  6. L. Cai, J. Sun, Y. Jiang, Z. Huang, Stabilization of heavy metals in piggery wastewater sludge through coagulation-hydrothermal reaction–pyrolysis process and sludge biochar for tylosin removal, J. Cleaner Prod., 260 (2020) 121165–121173.
  7. J. Akansha, P.V. Nidheesh, A. Gopinatha, K.V. Anupama, M. Suresh Kumara, Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process, Chemosphere, 253 (2020) 126652–126660.
  8. J. Dotto, M. Fagundes-Klen, M.T. Veit, S.M. Palacio, R. Bergamasco, Performance of different coagulants in the coagulation/flocculation process of textile wastewater, J. Cleaner Prod., 208 (2019) 656–665.
  9. D. Marmanis, K. Dermentzis, A. Christoforidis, Electrochemical treatment of olive mill waste powered by photovoltaic solar energy, J. Power Technol., 98 (2019) 377–381.
  10. X. Guo, J. Wang, A general kinetic model for adsorption: theoretical analysis and modelling, J. Mol. Liq., 288 (2019), doi: 10.1016/j.molliq.2019.111100.
  11. A.E. Regazzoni, E. Alberto, Adsorption kinetics at solid/ aqueous solution interfaces: on the boundaries of the pseudosecond- order rate equation, Colloids Surf., A, 585 (2020), doi: 10.1016/j.colsurfa.2019.124093.
  12. S.P. Kuang, Z. Wang, J. Liu, Preparation of triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion from aqueous solutions, J. Hazard. Mater., 260 (2013) 210–219.
  13. E.E. Gerek, S. Yılmaz, A. Savaş Koparal Combined energy and removal efficiency of electrochemical wastewater treatment for leather industry, J. Water Process Eng., 30 (2019), doi: 10.1016/j. jwpe.2017.03.007.
  14. J.B. Parsa, M. Rezaei, A. Soleymani, Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics, J. Hazard. Mater., 168 (2009) 997–1003.
  15. F. Ghanbari, M. Moradi, A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxicoagulation for decolorization of real textile wastewater: electrical energy consumption and biodegradability improvement, J. Environ. Chem. Eng., 3 (2015) 499–506.
  16. A. Sharm, Z. Syed, U.B. Akhilend, B. Gupta, C. Ram, Adsorption of textile wastewater on alkali-activated sand, J. Cleaner Prod., 220 (2019) 23–31.
  17. L.M.A. Fayoumi, M.A. Ezzedine, H.H. Akel, M.M.E. Jamal, Kinetic study of the degradation of crystal violet by K2S2O8 comparison with malachite green, Portugaliae Electrochim. Acta, 30 (2012) 121–133.
  18. N. Flores, E. Brillas, F. Centellas, R.M. Rodríguez, P.L. Cabot, J.A. Garrido, I. Sirés, Treatment of olive oil mill wastewater by single electrocoagulation with different electrodes and sequential electrocoagulation/electrochemical Fenton-based processes, J. Hazard. Mater., 347 (2018) 58–66.
  19. K. Szewczuk-Karpis, M. Wisniewsk, Adsorption layer structure at soil mineral/biopolymer/supporting electrolyte interface – the impact on solid aggregation, J. Mol. Liq., 284 (2019) 117–123.
  20. H.M. Jang, S. Yoo, Y.K. Choi, S. Park, E. Kan, Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar, Bioresour. Technol., 259 (2018) 24–31.
  21. S. Jiang, T. Yu, R. Xia, X. Wang, Realization of super high adsorption capability of 2D δ-MnO2/GO through intra-particle diffusion, Mater. Chem. Phys., 232 (2019) 374–381.
  22. N.A. Akbar, N.M. Kamil, H. Aziz, Assessment of kinetic models on Fe adsorption in groundwater using high-quality limestone, IOP Conf. Ser.: Earth Environ. Sci., 49 (2018), doi: 10.1088/1755-1315/140/1/012030.
  23. S. Jiang, T. Yu, R. Xia, X. Wang, M. Gao, Realization of super high adsorption capability of 2Dδ-MnO2•/GO through intraparticle diffusion, Mater. Chem. Phys., 232 (2019) 374–381.
  24. F.C. Wu, R.L. Tseng, R.S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153 (2009) 1–8.
  25. J.P. Simonin, On the comparison of pseudo-first-order and pseudo-second-order rate laws in the modeling of adsorption kinetics, Chem. Eng. J., 300 (2016) 254–263.
  26. R.K. Khamizov, D.A. Sveshnikova, A.E. Kucherova, L.A. Sinyaeva, Kinetic model of batch sorption processes: comparing calculated and experimental data, Russ. J. Phys. Chem. A, 10 (2018) 2032–2038.
  27. J.D. Méndez-Díaz, G. Prados-Joya, J. Rivera-Utrilla, R. Leyva- Ramos, M. Sánchez-Polo, M.A. Ferro-García, N.A. Medellín-Castillo, Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase, J. Colloid Interface Sci., 345 (2010) 481–490.
  28. Y.A. Ouaissa, M. Chabani, A. Amrane, Removal of tetracycline by electrocoagulation: kinetic and isotherm modeling through adsorption, J. Environ. Chem. Eng., 2 (2014) 177–184.
  29. S. Salvestrini, Analysis of the Langmuir rate equation in its differential and integrated form for adsorption processes and a comparison with the pseudo-first and pseudo-second-order models, React. Kinet. Mech. Catal., 123 (2018) 455–472.
  30. Y. Xiao, J. Azaiez, J.M. Hill, Erroneous application of pseudo second-order adsorption kinetics model: ignored assumptions and spurious correlations, Ind. Eng. Chem. Res., 57 (2018) 2705–2709.
  31. D. Robati, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, J. Nanostruct. Chem., 3 (2013) 1–6.
  32. G. Yuvaraja, N. Krishnaiah, M.V. Subbaiah, A. Krishnaiah, Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste, Colloids Surf., B, 114 (2014) 75–81.
  33. F. Deniz, Potential use of shell biomass (Juglans regia L.) for dye removal: relationships between kinetic pseudo-second-order model parameters and biosorption efficiency, Desal. Water Treat., 52 (2014) 1–3.