1. A. Sarris, Antarctic station life: the first 15 years of mixed expeditions to the Antarctic, Acta Astronaut., 131 (2017) 50–54.
  2. K.A. Hughes, A. Constable, Y. Frenot, J. Lopez-Martinez, E. Mclvor, B. Njastad, A. Terauds, D. Liggett, G. Roldan, A. Wilmotte, J.C. Xavier, Antarctic environmental protection: strengthening the links between science and governance, Environ. Sci. Policy, 83 (2018) 86–95.
  3. Australia Antarctic Division, Pollution and Waste, Department of the Environmental and Energy, 2012. Available at:
  4. T. Tin, Z.L. Fleming, K.A. Hughes, D.G. Ainley, P. Convey, C.A. Moreno, S. Pfeiffer, J. Scott, I. Snape, Review impacts of local human activities on the Antarctic environment, Antarct. Sci., 21 (2009) 3–33.
  5. T.A. Tengku-Mazuki, A. Zulkharnain, K. Subramaniam, P. Convey, C. Gomez-Fuentes, S.A. Ahmad, Effects of zinc (Zn) and chromium (Cr) on the phenol-degrading bacteria growth kinetics, Malaysian Biochem. Mol. Biol., 23 (2020) 1–4.
  6. V. Ruoppolo, E.J. Whoehler, K. Morgan, C.J. Clumpner, Wildlife and oil in the Antarctic: a recipe for cold disaster, Polar Rec., 49 (2013) 97–103.
  7. P.K. Bharti, B. Sharma, R.K. Singh, A.K. Tyagi, Waste generation and management in Antarctica, Procedia Environ. Sci., 35 (2016) 40–50.
  8. M.F. Fingas, Vegetable Oil Spills: Oil Properties and Behaviour, Handbook of Oil Spill Science and Technology, John Wiley and Sons Inc, Canada, 2012.
  9. United States Environmental Protection Agency (EPA), Vegetable Oils and Animal Fats, 2020. Available at: https://
  10. National Oceanic and Atmospheric Administration (NOAA), How Oil Harms Animals and Plants in Marine Environments, 2019. Available at: https://www. response.restoration.noaa. gov.
  11. European Oiled Wildlife Response Assistance Module (EUROWA), Effect of Oil on Wildlife, 2019. Available at: https://
  12. K. Lee, M. Baudreau, J. Bugden, L. Burridge, S.E. Cobanli, S. Courtenay, S. Grenon, B. Hollebone, P. Kepkay, Z. Li, M. Lyons, H. Niu, T.L. King, S. MacDonald, E.C. Mclntyre, B. Robinson, S.A. Ryan, G. Wohlgeschaffen, State of Knowledge Review of Fate and Effect of Oil in the Arctic Marine Environment, Report prepared for National Energy Board of Canada, Centre for Offshore Oil, Gas and Energy Research (COOGER), Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, 2011, Available at: https//:www.researchgate. net.
  13. P.F. Kingston, Long-term environmental impact of oil spills, Spill Sci. Technol. Bull., 7 (2002) 53–61.
  14. J.M. Aislabie, M.R. Balks, J.M. Fought, E.J. Waterhouse, Hydrocarbon spills on Antarctic soils: effects and management, Environ. Sci. Technol., 38 (2004) 1265–1274.
  15. K.N.M. Zahri, A. Zulkharnain, S. Ibrahim, C. Gomez-Fuentes, S. Sabri, N. Calisto-Ulloa, S.A. Ahmad, Kinetic analysis on the effects of lead (Pb) and silver (Ag) on waste canola oil (WCO) biodegradation by selected Antarctic microbial consortium, Malaysian Biochem. Mol. Biol., 23 (2020) 20–23.
  16. S. Kariminia, S.S. Ahmad, R. Hashim, Z. Ismail, Environmental consequences of Antarctic tourism from a global prospective, Procedia Soc. Behav. Sci., 105 (2013) 781–791.
  17. E. Abatenh, B. Gizaw, Z. Tsegaye, M. Wassie, The role of microorganisms in bioremediation- a review, Environ. Biol., 2 (2017) 38–46.
  18. N.N. Zakaria, Z. Man, A. Zulkharnain, S.A. Ahmad, Psychrotolerant biosurfactant-producing bacteria for hydrocarbon degradation: a mini review, Malaysian Biochem. Mol. Biol., 22 (2019) 52–59.
  19. L. Zhao, W. Guoa, W. Zhaoa, X. Tanga, Q. Lia, Z. Huanga, Bioremediation technologies and mechanisms for pentachlorophenol contaminated soil and sediment of water environment, Desal. Water Treat., 125 (2018) 278–284.
  20. Y. Fan, G. Wang, J. Fu, X. Zheng, Bioremediation of waste drilling fluid: comparison of biostimulation and bioaugmentation, Desal. Water Treat., 48 (2012) 329–334.
  21. C.C. Azubuike, C.B. Chikere, G.C. Olpokwasili, Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects, World J. Microb. Biotechnol., 32 (2016) 180.
  22. I.Z. Affandi, N.H. Suratman, S. Abdullah, W.A. Ahamd, Z.A. Zakaria, Degradation of oil and grease from high-strength industrial effluents using locally isolated aerobic biosurfactantproducing bacteria, Int. Biodeterior. Biodegrad., 95 (2014) 33–40.
  23. S. Ibrahim, A. Zulkharnain, K.N.M. Zahri, G.L.Y. Lee, P. Convey, C. Gomez-Fuentes, S. Sabri, K. Khalil, S. Alias, G. Gonzalez-Rocha, S.A. Ahmad, Effect of heavy metals and other xenobiotics on biodegradation of waste canola oil by coldadapted Rhodococcus sp. strain AQ5-07, Rev. Mex. Ing. Quím., 19 (2020) 1041–1052.
  24. M.T. Piakong, N.Z. Zaida, Effectiveness of single and microbial consortium of locally isolated beneficial microorganisms (LIBeM) in bioaugmentation of oil sludge contaminated soil at different concentration levels: a laboratory scale, J. Biorem. Biodegrad., 9 (2018). doi: 10.4172/2155–6199.1000430
  25. K. Patowary, R. Patowary, M.C. Kalita, S. Deka, Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites, Front. Microbiol., 7 (2016). doi: 10.3389/fmicb.2016.01092
  26. A. Nzila, A. Thukair, S. Sankara, S.A. Razzak, Characterisation of aerobic oil and grease-degrading bacteria in wastewater, Environ. Technol., 38 (2016) 661–670.
  27. N. Gurung, S. Ray, S. Bose, V. Rai, A broader view: microbial enzymes and their relevance in industries, medicine, and beyond, BioMed Res. Int., (2013) 329121. doi: 10.1155/2013/329121
  28. M. Balseiro-Romero, C. Monterroso, P.S. Kidd, P. Gkorezis, J. Vangronsveld, J.J. Casares, Modelling the Bioremediation of a Diesel-Contaminated Soil Using an Enriched Hydrocarbon- Degrading Inoculant, 2017. Available at: http://www.systemdynamics. org.
  29. N. Mehrmand, M.K. Moravaji, A. Parvareh, Adsorption of Pb(II), Cu(II) and Ni(II) ions on sfunctionalised carbon nanotube-C60 hybrid: adsorption process, isotherm, thermodynamic and kinetic studies, Desal. Water Treat., 152 (2019) 283–298.
  30. D.J. Mahanta, M. Borah, P. Saikia, A study on kinetic models for analysing the bacterial growth rate, Am. Int. J. Res. Sci. Technol. Eng. Math., 14 (2014) 68–72.
  31. J.A. Robinson, Determining microbial kinetic parameters using non-linear regression analysis, Adv. Microb. Ecol., 8 (1985) 61–114.
  32. S.A. Ahmad, K.N.E.K. Ahamad, W.L.W. Johari, M.I.E. Halmi, M.Y. Shukor, M.T. Yusof, Kinetics of diesel degradation by and acrylamide-degrading bacterium, Sci. Fisiche e Naturali, 25 (2014) 505–512.
  33. D. Tazdait, N. Abdi, H. Grib, H. Lounici, A. Pauss, N. Mameri, Comparison of different models of substrate inhibition in aerobic batch biodegradation of malathion, Turk. J. Eng. Environ. Sci., 37 (2013) 221–230.
  34. M.E. Hibbing, C. Fuqua, M.R. Parsek, S.B. Peterson, Bacterial competition: surviving and thriving in the microbial jungle, Nat. Rev. Microbiol., 8 (2010) 15–25.
  35. J.G. Leahy, R.H. Olsen, Kinetics of toluene degradation by toluene-oxidising bacteria as a function of oxygen concentration, and the effect of nitrate, FEMS Microbiol. Ecol., 23 (1997) 23–30.
  36. N. Debasmita, M. Rajasimman, Optimisation and kinetics studies on biodegradation of atrazine using mixed microorganisms, Alexandria Eng. J., 52 (2013) 499–505.
  37. I. Kachieng, M.N.B. Momba, Kinetics of petroleum oil biodegradation by a consortium of three protozoan isolates (Aspidisca sp., Trachelophyllum sp. and Peranema sp.), Biotechnol. Rep., 15 (2017) 125–131.
  38. G.C. Mbah, K.O. Obahiagbon, Kinetics of bioremediation of crude oil contaminated soil using organic and inorganic particulates, Petrol. Sci. Technol., 36 (2018) 9–15.
  39. G.L.Y. Lee, S.A. Ahmad, N.A. Yasid, A. Zulkharnain, P. Convey, W.L.W. Johari, S.A. Alias, G. Gonzalez-Rocha, M.Y. Shukor, Biodegradation of phenol by adapted bacteria from Antarctic soils, Polar Biol., 41 (2018) 553–562.
  40. J. Membre, M. Kubaczka, C. Chene, Combined effects of pH and sugar on growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast, Appl. Environ. Microbiol., 65 (1999) 4921–4925.
  41. D.S. Nichols, J. Olley, H. Garda, R.R. Brenner, T.A. McMeekin, Effect of temperature and salinity stress on growth and lipid composition of Shewanella gelidimarina, Appl. Environ. Microbiol., 66 (2000) 2422–2429.
  42. H. Oh, Y. Wee, J. Yun, H. Ryu, Lactic acid production through cell-recycle repeated-batch bioreactor, Appl. Biochem. Biotechnol., 105 (2003) 604–613.
  43. J.E. Aston, B.M. Peyton, Response of Halomonas campisalis to saline stress: changes in growth kinetics, compatible solute production and membrane phospholipid fatty acid composition, FEMS Microbiol. Lett., 274 (2007) 196–203.
  44. Z. Hu, S. Duan, N. Xu, M.R. Mulholland, Growth and nitrogen uptake kinetics in cultures Prorocentrum donghaiense, PLoS One, 9 (2014) e94030.
  45. N.M. Nawawi, S.A. Ahmad, M.Y. Shukor, M.A. Syed, K.A. Khalil, N.A.A. Rahman, F.A. Dahalan, A.L. Ibrahim, Statistical optimisation for improvement of phenol degradation by Rhodococcus sp. NAM 81, J. Environ. Biol., 37 (2016) 443–451.
  46. A. Khoshdel, B.M. Vaziri, Novel mathematical models for prediction of microbial growth kinetics and contaminant degradation in bioremediation process, J. Environ. Eng. Landscape Manage., 24 (2016) 157–164.
  47. M. Manogaran, M.Y. Shukor, N.A. Yasid, K.A. Khalil, S.A. Ahmad, Optimisation of culture composition for glyphosate degradation by Burkholderia vietnamiensis strain AQ5– 12, 3 Biotech, 8 (2018) 108–120.
  48. S. Aiba, M. Shoda, M. Nagatani, Kinetics of product inhibition in alcohol fermentation, Biotechnol. Bioeng., 67 (1968) 671–690.
  49. J.S.B. Haldane, Enzymes, Longmans, Green & Co, MIT Press, Cambridge, United Kingdom, 1930.
  50. V.H. Edwards, The influence of high substrate concentrations on microbial kinetics, Biotechnol. Bioeng., 12 (1970) 679–712.
  51. T. Yano, S. Koga, Dynamic behavior the chemostat subject to substrate inhibition, Biotechnol. Bioeng., 19 (1969) 97–114.
  52. H. Pham, A new criterion for model selection, Mathematics, 7 (2019). doi: 10.3390/math7121215
  53. L.A. Mellefont, T.A. McMeekin, T. Ross, Performance evaluation of a model describing the effects of temperature, water activity, pH and lactic acid concentration on the growth of Escherichia coli, Int. J. Food Microbiol., 82 (2003) 45–58.
  54. S.H. Hamad, Factors Affecting the Growth of Microorganism in Food, R. Bhat, A. Karim Alias, G. Paliyath, Eds., Progress in Food Preservation, Wiley-Blackwell, Oxford, UK, 2012.
  55. A.M. Mukred, A.A. Hamid, A. Hamzah, W.M. Wan Yusoff, Enhancement of biodegradation of crude peroleum-oil in contaminated water by the addition of nitrogen sources, Pak. Biol. Sci., 11 (2008) 2122–2127.
  56. K. Subramaniam, T.A.T. Mazuki, M.Y. Shukor, S.A. Ahmad, Isolation and optimisation of phenol degradation by Antarctic isolate using one factor at a time, Malaysian J. Biochem. Mol. Biol., 1 (2019) 79–86.
  57. M. Abdulrasheed, N. Zakaria, A.F.A. Roslee, M.Y. Shukor, A. Zulkharnain, S. Napis, S.A. Alias, G. Gonzalez-Rocha, S.A. Ahmad, Biodegradation of diesel oil by cold-adapted bacterial strains of Arthrobacter spp. from Antarctica, Antarct. Sci., (2020) 1–13, doi: 10.1017/S0954102020000206.
  58. S. Sumarsih, N. Matuzahroh, Fatimah, M. Puspitasari, M. Rusdiana, Effect of aliphatic and aromatic hydrocarbons on the oxygenase production from hyrdocarbonoclastic bacteria, J. Chem. Technol. Metall., 52 (2017) 1062–1069.
  59. D. Maliji, Z. Olama, H. Holail, Environmental studies on the microbial degradation of oil hydrocarbons and its application in Lebanese oil polluted coastal and marine ecosystem, Int. J. Curr. Microbiol. Sci., 2 (2013) 1–18.
  60. M. Hassanshahian, S. Cappello, Crude oil biodegradation in the marine environments. In R. Chamy, F. Rosenkranz, Eds., Biodegradation-Engineering Technology, InTech, Rijeka, Croatia, 2013.
  61. L. Huang, J. Xie, B. Lv, X. Shi, G. Li, F. Liang, J. Lian, Optimisation of nutrient component for diesel oil degradation by Acinetobacter baijerinckii ZRS, Mar. Pollut. Bull., 76 (2013) 325–332.
  62. N.N. Zakaria, A.F.A. Roslee, C. Gomez-Fuentes, A. Zulkharnain, M. Abdulrasheed, S. Sabri, N. Ramírez-Moreno, N. Calisto-Ulloa, S. Ahmad, Kinetic studies of marine psychrotolerant microorganisms capable of degrading diesel in the presence of heavy metals, Rev. Mex. Ing. Quím., 19 (2020) 1375–1388.
  63. A. Ruiz-Marín, J.C. Zavala-Loria, Y. Canedo-López, A.V. Cordova-Quiroz, Tropical bacteria isolated from oil-contaminated mangrove soil: bioremediation by natural attenuation and bioaugmentation, Rev. Mex. Ing. Quím., 12 (2013) 553–560.
  64. M.S.M. Annuar, I.K.P. Tan, S. Ibrahim, K.B. Ramachandran, A kinetic model for growth and biosynthesis of medium-chain-length poly-(3-Hydroxyalkanoates) in Pseudomonas putida, Braz. J. Chem. Eng., 25 (2008) 217–228.
  65. J. Carrera, I. Jubany, L. Carvallo, R. Chamy, J. Lafuente, Kinetic models for nitrification inhibition by ammonium and nitrate in a suspended and an immobilised biomass systems, Process Biochem., 39 (2004) 1159–1165.
  66. J. Krishnan, A.A. Kishore, A. Suresh, A.K. Murali, J. Vasudevan, Biodegradation kinetics of azo dye mixture: substrate inhibition modelling, Res. J. Pharm. Biol. Chem. Sci., 8 (2017) 365–375.
  67. A.F.A. Roslee, N.N. Zakaria, P. Convey, A. Zulkharnain, G.L.Y. Lee, C. Gomez-Fuentes, S.A. Ahmad, Statistical optimisation of growth conditions and diesel degradation by the Antarctic bacterium, Rhodococcus sp. Strain AQ5–07, Extremophiles, 24 (2020) 277–291.
  68. S. Habib, S.A. Ahmad, W.L.W. Johari, M.Y.A. Shukor, S.A. Alias, K.A. Khalil, N.A. Yasid, Evaluation of conventional and response surface level optimisation on n-dodecane (n-C12) mineralisation by psychrotolerant strains isolated from pristine soil at Southern Victoria Island, Antarctica, Microb. Cell Fact., 17 (2018) 44–65.
  69. C. Park, E.A. Marchand, Modelling salinity inhibition effects during biodegradation of perchlorate, J. Appl. Microbiol., 101 (2005) 222–233.
  70. A.R. Shaw, Investigating the Significance of Half-saturation Coefficients on Wastewater Treatment Processes, Ph.D. dissertation, Graduate College of the Illinois Institute of Technology, United States, 2015.
  71. M.N. Metsoviti, N. Katsoulas, I.T. Karapanagiotidis, G. Papapolymerou, Effect of nitrogen concentration, two-stage and prolonged cultivation on growth rate, lipid and protein content of Chlorella vulgaris, J. Chem. Technol. Biotechnol., 94 (2018) 1466–1573.
  72. A. Bren, Y. Hart, E. Dekel, D. Koster, U. Alon, The last generation of bacterial growth in limiting nutrient, BMC Syst. Biol., 7 (2013) 27–35.
  73. P.M. Armenante, F. Fava, D. Kafkewits, Effect of yeast extract on growth kinetics during aerobic biodegradation of chlorobenzoic acids, Biotechnol. Bioeng., 47 (1995) 227–233.
  74. P. Saravanan, K. Pakshirajan, P. Saha, Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor, Bioresour. Technol., 99 (2008) 205–209.
  75. P. Gluszc, J. Petera, S. Ledakowicz, Mathematical modelling of the integrated process of mercury bioremediation in the industrial bioreactor, Bioprocess Biosyst. Eng., 34 (2011) 275–285.
  76. S. Dey, S. Mukherjee, A study of the kinetic coefficients and the rate of biodegradation of phenol by indigenous mixed microbial system, Afr. J. Water Conserv. Sustainability, 2 (2014) 99–107. Available at:
  77. S. Sandhibigraha, S. Chakraborty, T. Bandyopadhyay, B. Bhunia, A kinetic study of 4-chlorophenol biodegradation by the novel isolated Bacillus subtilis in batch shake flask, Environ. Eng. Res., 25 (2020) 62–70.
  78. Z. Sadouk-Hachaichi, A. Tazerouti, H. Hacene, Growth kinetics study of a bacterial consortium producing biosurfactants, constructed with six strains isolated from oily sludge, Adv. Biosci. Biotechnol., 5 (2014) 418–425.
  79. P.L. Brezonik, Chemical Kinetics and Process Dynamics in Aquatic Systems, Lewis Publishers, Florida, US, 2002.