1. C. Quintelas, Z. Rocha, B. Silva, B. Fonseca, H. Figueiredo, T. Tavares, Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin, Chem. Eng. J., 149 (2009) 319–324.
  2. Z.A. Alothman, A.H. Bahkali, M.A. Khiyami, S.M. Alfadul, S.M. Wabaidur, M. Alam, B.Z. Alfarhan, Low cost biosorbents from fungi for heavy metals removal from wastewater, Sep. Sci. Technol., 55 (2020) 1766–1775.
  3. A. Selatnia, A. Boukazoula, N. Kechid, M.Z. Bakhti, A. Chergui, Biosorption of Fe3+ from aqueous solution by a bacterial dead Streptomyces rimosus biomass, Process Biochem., 39 (2004) 1643–1651.
  4. N. Yeddou, A. Bensmaili, Equilibrium and kinetic modelling of iron adsorption by eggshells in a batch system: effect of temperature, Desalination, 206 (2007) 127–134.
  5. M. Matouq, N. Jildeh, M. Qtaishat, M. Hindiyeh, M.Q. Al Syouf, The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods, J. Environ. Chem. Eng., 3 (2015) 775–784.
  6. S.R. Shukla, R.S. Pai, A.D. Shendarkar, Adsorption of Ni(II), Zn(II) and Fe(II) on modified coir fibres, Sep. Purif. Technol., 47 (2006) 141–147.
  7. M. Zhao, Y. Xu, C. Zhang, H. Rong, G. Zeng, New trends in removing heavy metals from wastewater, Appl. Microbiol. Biotechnol., 100 (2016) 6509–6518.
  8. D. Mani, C. Kumar, Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation, Int. J. Environ. Sci. Technol., 11 (2014) 843–872.
  9. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Kinetics and equilibrium adsorption of iron(II), lead(II), and copper(II) onto activated carbon prepared from olive stone waste, Desal. Water Treat., 52 (2014) 7887–7897.
  10. L. Fang, L. Li, Z. Qu, H. Xu, J. Xu, N. Yan, A novel method for the sequential removal and separation of multiple heavy metals from wastewater, J. Hazard. Mater., 342 (2018) 617–624.
  11. X.S. Wang, Y.P. Tang, S.R. Tao, Kinetics, equilibrium and thermodynamic study on removal of Cr(VI) from aqueous solutions using low-cost adsorbent Alligator weed, Chem. Eng. J., 148 (2009) 217–225.
  12. X. Tang, Q. Zhang, Z. Liu, K. Pan, Y. Dong, Y. Li, Removal of Cu(II) by loofah fi bers as a natural and low-cost adsorbent from aqueous solutions, J. Mol. Liq., 199 (2014) 401–407.
  13. B. Acemiog􀉞lu, Removal of Fe(II) ions from aqueous solution by Calabrian pine bark wastes, Bioresour. Technol., 93 (2004) 99–102.
  14. W.S.W. Ngah, S. Ab Ghani, A. Kamari, Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads, Bioresour. Technol., 96 (2005) 443–450.
  15. D. Mohan, S. Chander, Single, binary, and multicomponent sorption of iron and manganese on lignite, J. Colloid Interface Sci., 299 (2006) 76–87.
  16. L.M. Nieto, S.B.D. Alami, G. Hodaifa, C. Faur, S. Rodriguez, J.A. Gimenez, J. Ochando, Adsorption of iron on crude olive stones, Ind. Crops Prod., 32 (2010) 467–471.
  17. J.C.P. Vaghetti, E.C. Lima, B. Royer, N.F. Cardoso, B. Martins, T. Calvete, Pecan nutshell as biosorbent to remove toxic metals from aqueous solution, Sep. Sci. Technol., 44 (2009) 615–644.
  18. V. Lugo-Lugo, C. Barrera-Díaz, F. Ureña-Núñez, B. Bilyeu, I. Linares-Hernández, Biosorption of Cr(III) and Fe(III) in single and binary systems onto pretreated orange peel, J. Environ. Manage., 112 (2012) 120–127.
  19. S. Baytak, A.R. Türker, The use of Agrobacterium tumefacients immobilized on Amberlite XAD-4 as a new biosorbent for the column preconcentration of iron(III), cobalt(II), manganese(II) and chromium(III), Talanta, 65 (2005) 938–945.
  20. Y.N. Wang, Q. Liu, L. Shu, M.S. Miao, Y.Z. Liu, Q. Kong, Removal of Cr(VI) from aqueous solution using Fe-modified activated carbon prepared from luffa sponge: kinetic, thermodynamic, and isotherm studies, Desal. Water Treat., 57 (2016) 29467–29478.
  21. M.S. Miao, Y.N. Wang, Q. Kong, L. Shu, Adsorption kinetics and optimum conditions for Cr(VI) removal by activated carbon prepared from luffa sponge, Desal. Water Treat., 57 (2016) 7763–7772.
  22. Y.J. Shih, C.D. Dong, Y.H. Huang, C.P. Huang, Loofah-derived activated carbon supported on nickel foam (AC/Ni) electrodes for the electro-sorption of ammonium ion from aqueous solutions, Chemosphere, 242 (2020), doi: .
  23. E.S.Z. El Ashtoukhy, Loofa egyptiaca as a novel adsorbent for removal of direct blue dye from aqueous solution, J. Environ. Manage., 90 (2009) 2755–2761.
  24. Z.P. Qi, Q. Liu, Z.R. Zhu, Q. Kong, Q.F. Chen, C.S. Zhao, Y.Z. Liu, M.S. Miao, C. Wang, Rhodamine B removal from aqueous solutions using loofah sponge and activated carbon prepared from loofah sponge, Desal. Water Treat., 57 (2016) 29421–29433.
  25. Q. Kong, Y.N. Wang, L. Shu, M.S. Miao, Isotherm, kinetic, and thermodynamic equations for cefalexin removal from liquids using activated carbon synthesized from loofah sponge, Desal. Water Treat., 57 (2016) 7933–7942.
  26. Q. Kong, X. He, L. Shu, M. Sheng Miao, Ofloxacin adsorption by activated carbon derived from luffa sponge: kinetic, isotherm, and thermodynamic analyses, Process Saf. Environ. Prot., 112 (2017) 254–264.
  27. Q. Cao, K.C. Xie, Y.K. Lv, W.R. Bao, Process effects on activated carbon with large specific surface area from corn cob, Bioresour. Technol., 97 (2006) 110–115.
  28. J. Kaåomierczak, P. Nowicki, R. Pietrzak, Sorption properties of activated carbons obtained from corn cobs by chemical and physical activation, Adsorption, 19 (2013) 273–281.
  29. M. Song, B. Jin, R. Xiao, L. Yang, Y. Wu, Z. Zhong, Y. Huang, The comparison of two activation techniques to prepare activated carbon from corn cob, Biomass Bioenergy, 48 (2013) 250–256.
  30. D.P. Dutta, S. Nath, Low cost synthesis of SiO2/C nanocomposite from corn cobs and its adsorption of uranium(VI), chromium(VI) and cationic dyes from wastewater, J. Mol. Liq., 269 (2018) 140–151.
  31. S. Nethaji, A. Sivasamy, A.B. Mandal, Preparation and characterization of corn cob activated carbon coated with nanosized magnetite particles for the removal of Cr(VI), Bioresour. Technol., 134 (2013) 94–100.
  32. X.L. Duan, C.G. Yuan, T.T. Jing, X.D. Yuan, Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation, Fuel, 239 (2019) 830–840.
  33. G.O. El-Sayed, M.M. Yehia, A.A. Asaad, Assessment of activated carbon prepared from corn cob by chemical activation with phosphoric acid, Water Resour. Ind., 7–8 (2014) 66–75.
  34. L.M. Pandey, Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue, Appl. Clay Sci., 169 (2019) 102–111.
  35. H. Mahanna, M. Azab, Adsorption of Reactive Red 195 dye from industrial wastewater by dried soybean leaves modified with acetic acid, Desal. Water Treat., 178 (2020) 312–321.
  36. M. Bounaas, A. Bouguettoucha, D. Chebli, A. Reffas, I. Harizi, F. Rouabah, A. Amrane, High efficiency of methylene blue removal using a novel low-cost acid treated forest wastes, Cupressus semperirens cones: experimental results and modeling, Part. Sci. Technol., 37 (2019) 504–513.
  37. H. Younes, H. Mahanna, H.K. El-Etriby, Fast adsorption of phosphate (PO4) from wastewater using glauconite, Water Sci. Technol., 80 (2019) 1643–1653.
  38. O. Aksakal, H. Ucun, Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L., J. Hazard. Mater., 181 (2010) 666–672.
  39. G. Hodaifa, J.M. Ochando-Pulido, S. Ben Driss Alami, S. Rodriguez-Vives, A. Martinez-Ferez, Kinetic and thermodynamic parameters of iron adsorption onto olive stones, Ind. Crops Prod., 49 (2013) 526–534.