1. R. Remus, M. Monsonet, R. Serge, L. Sancho, Best Available Techniques (BAT) Reference Document for Iron and Steel Production, Industrial Emissions Directive 2010/75/EU 2013.
  2. D. Maiti, I. Ansari, M.A. Rather, A. Deepa, Comprehensive review on wastewater discharged from the coal-related industries – characteristics and treatment strategies, Water Sci. Technol., 79 (2019) 2023–2035.
  3. J. Wang, F.-L. Luo, J.-H. Chen, B. Lu, Study on advanced treatment of coking wastewater by double-membranes method, Adv. Mater. Energy Sustainable, (2017) 493–500, https://doi. org/10.1142/9789813220393_0061.
  4. R. Kumar, P. Pal, Removal of phenol from coke-oven wastewater by cross-flow nanofiltration membranes, Water Environ. Res., 85 (2013) 447–455.
  5. M. Samimi, M.S. Moghadam, Phenol biodegradation by bacterial strain O-CH1 isolated from seashore, Global J. Environ. Sci. Manage., 6 (2020) 109–118.
  6. W.W. Ma, Y.X. Han, C.Y. Xu, H.J. Han, D. Zhong, H. Zhu, K. Li, The mechanism of synergistic effect between ironcarbon microelectrolysis and biodegradation for strengthening phenols removal in coal gasification wastewater treatment, Bioresour. Technol., 271 (2019) 84–90.
  7. A. Noworyta, A. Trusek-Hołownia, S. Mielczarski, M. Kubasiewicz-Ponitka, An integrated pervaporation– biodegradation process of phenolic wastewater treatment, Desalination, 198 (2006) 191–197.
  8. J. Wang, X.D. Zhang, B. Zhang, L.Z. Jiang, M.W. Xie, Advanced treatment of coking wastewater by sequencing batch MBR-RO, Adv. Mater. Res., 838–841 (2014) 2791–2796.
  9. G.E. Chen, Y. Zhou, Z.L. Xu, Q. Lu, Cake fouling mechanism and analysis of synthetic coke wastewater treatment by membrane bioreactor, Fundam. Chem. Eng., 233–235 (2011) 953–958.
  10. N. Jha, Z. Kiss, B. Gorczyca, Fouling mechanism in nanofiltration membranes for the treatment of high DOC and varying hardness water, Desal. Water Treat., 127 (2018) 197–212.
  11. M. Zhuo, K. Lv, X.Y. Zhang, Y. Zhang, X.Z. Shi, Y. Lu, Study of the effect of morphological structure on microfiltration membrane fouling, Desal. Water Treat., 152 (2019) 1–10.
  12. S. Mondal, S. De, Generalized criteria for identification of fouling mechanism under steady state membrane filtration, J. Membr. Sci., 344 (2009) 6–13.
  13. Z.W. He, D.J. Miller, S. Kasemset, D.R. Paul, B.D.Freeman, The effect of permeate flux on membrane fouling during microfiltration of oily water, J. Membr. Sci., 525 (2017) 25–34.
  14. W. Gao, H. Liang, J. Ma, M. Han, Z.-L. Chen, Z.-S. Han, G.-B. Li, Membrane fouling control in ultrafiltration technology for drinking water production: a review, Desalination, 272 (2011) 1–8.
  15. M. Lech, A. Trusek, Biofouling phenomena on the ceramic microfiltration membranes an experimental research, Desal. Water Treat., 128 (2018) 236–242.
  16. S. Ebrahim, Cleaning and regeneration of membranes in desalination and wastewater applications: state-of-the-art, Desalination, 96 (1994) 225–238.
  17. T. Zsirai, P. Buzatu, P. Aerts, S. Judd, Efficacy of relaxation, backflushing, chemical cleaning and clogging removal for an immersed hollow fibre membrane bioreactor, Water Res., 46 (2012) 4499–4507.
  18. P.C. Bandara, E.T. Nadres, J. Peña-Bahamonde, D.F. Rodrigues, Impact of water chemistry, shelf-life, and regeneration in the removal of different chemical and biological contaminants in water by a model polymeric graphene oxide nanocomposite membrane coating, J. Water Process Eng., 32 (2019) 100967,
  19. J. Cakl, I. Bauer, P. Doleček, P. Mikulášek, Effects of backflushing conditions on permeate flux in membrane crossflow microfiltration of oil emulsion, Desalination, 127 (2000) 189–198.
  20. A. Salladini, M. Prisciandaro, D. Barba, Ultrafiltration of biologically treated wastewater by using backflushing, Desalination, 207 (2007) 24–34.
  21. P. Srijaroonrat, E. Julien, Y. Aurelle, Unstable secondary oil/ water emulsion treatment using ultrafiltration: fouling control by backflushing, J. Membr. Sci., 159 (1999) 11–20.
  22. H.-G. Kim, C. Park, J.M. Yang, B. Lee, S.-S. Kim, S.Y. Kim, Optimization of backflushing conditions for ceramic ultrafiltration membrane of disperse dye solutions, Desalination, 202 (2007) 150–155.
  23. C. Atallah, S. Mortazavi, A.Y. Tremblay, A. Doiron, Surfacemodified multi-lumen tubular membranes for SAGD-produced water treatment, Energy Fuels, 33 (2019) 5766–5776.
  24. A. Nabe, E. Staude, G. Belfort, Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions, J. Membr. Sci., 133 (1997) 57–72.
  25. M.C. Porter, Handbook of Industrial Membrane Technology, Noyes Publications, USA, 1990.
  26. F. Al-Bakeri, H. El Hares, Experimental optimization of sponge ball cleaning system operation in Umm AI Nar MSF desalination plants, Desalination, 94 (1993) 133–150.
  27. C. Yanagi, K. Mori, Advanced reverse osmosis process with automatic sponge ball cleaning for the reclamation of municipal sewage, Desalination, 32 (1980) 391–398.
  28. C. Psoch, S. Schiewer, Direct filtration of natural and simulated river water with air sparging and sponge ball application for fouling control, Desalination, 197 (2006) 190–204.
  29. B.B. Gupta, P. Blanpain, M.Y. Jaffrin, Permeate flux enhancement by pressure and flow pulsations in microfiltration with mineral membranes, J. Membr. Sci., 70 (1992) 257–266.
  30. A. Noworyta, T. Koziol, A. Trusek-Holownia, A system for cleaning condensates containing ammonium nitrate by the reverse osmosis method, Desalination, 156 (2003) 397–402.
  31. I. Petrinic, J. Korenak, D. Povodnik, C. Hélix-Nielsen, A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry, J. Cleaner Prod., 101 (2015) 292–300.
  32. X. Zou, J. Li, On the fouling mechanism of polysulfone ultrafiltration membrane in the treatment of coal gasification wastewater, Front. Chem. Sci. Eng., 10 (2016) 490–498.
  33. A. Kwiecińska, M. Kochel, K. Rychlewska, J. Figa, The use of ultrafiltration in enhancement of chemical coke oven wastewater treatment, Desal. Water Treat., 128 (2018) 214–221.
  34. M. Kolb, M. Bahadir, B. Teichgräber, Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate, Water Res., 122 (2017) 645–654.
  35. C.E. Bright, S.M. Mager, S.L. Horton, Predicting suspended sediment concentration from nephelometric turbidity in organic-rich waters, River Res. Appl., 34 (2018) 640–648.
  36. S. Acarbabacanm, I. Vergili, Y. Kaya, G. Demir, H. Barlas, Removal of color from textile wastewater containing azodyes by Fenton’s reagent, Fresenius Environ. Bull., 11 (2002) 840–843.
  37. files/AA-Perkin%20Elmer%20guide%20to%20all!.pdf