1. H. March, D. Saur, A.M. Rico-Amorós, The end of scarcity? Water desalination as the new cornucopia for Mediterranean Spain, J. Hydrol., 519 (2014) 2642–2651.
  2. P.S. Goh, A.F. Ismail, N. Hilal, Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination?, Desalination, 380 (2016) 100–104.
  3. R. Baten, K. Stummeyer, How sustainable can desalination be?, Desal. Water Treat., 51 (2013) 44–52.
  4. S. Miller, H. Shemer, R. Semiat, Energy and environmental issues in desalination, Desalination, 366 (2015) 2–8.
  5. B.M. Haddad, A case for an ecological–economic research program for desalination, Desalination, 324 (2013) 72–78.
  6. N. Voutchkov, Energy use for membrane seawater desalination – current status and trends, Desalination, 431 (2018) 2–14.
  7. N. Voutchkov, R. Bergman, Chapter 3 – Facility Design and Construction, in: Reverse Osmosis and Nanofiltration, Manual of Water Supply Practices M 46, 2nd ed., AWWA, Denver, USA, 2007, pp. 63–163.
  8. M.H.I. Dore, Forecasting the economic costs of desalination technology, Desalination, 172 (2005) 207–214.
  9. K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination—development to date and future potential, J. Membr. Sci., 370 (2011) 1–22.
  10. G. Amy, N. Ghaffour, Z.Y. Li, L. Francis, R.V. Linares, T. Missimer, S. Lattemann, Membrane-based seawater desalination: present and future prospects, Desalination, 401 (2017) 16–21.
  11. S. Raghavendra, Hebbar, A.M. Isloor, Inamuddin, A.M. Asiri, Carbon nanotube- and graphene-based advanced membrane materials for desalination, Environ. Chem. Lett., 15 (2017) 643–671.
  12. S.S. Shenvi, A.M. Isloor, A.F. Ismail, A review on RO membrane technology: developments and challenges, Desalination, 368 (2015) 10–26.
  13. B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes, Science, 303 (2004) 62–65.
  14. M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, The application for nanotechnology and nanomaterials in water and wastewater treatment: membranes, photocatalysis and disinfection, Desal. Water Treat., 186 (2020) 88–106.
  15. M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, Nanotechnology in water and wastewater treatment. Graphene – the nanomaterial for next generation of semipermeable membranes, Crit. Rev. Env. Sci., 50 (2020) 1515–1579.
  16. M. Majumder, P. Ajayan, Carbon Nanotube Membranes: A New Frontier in Membrane Science, E. Drioli, L. Giorno, Eds., Comprehensive Membrane Science and Engineering, Vol. 1, Elsevier, 2010, pp. 291–310.
  17. S.T. Hsu, K.T. Cheng, J.S. Chiou, Seawater desalination by direct contact membrane distillation, Desalination, 143 (2002) 279–287.
  18. M. Sadrzadeh, T. Mohammadi, Seawater desalination using electrodialysis, Desalination, 221 (2008) 440–447.
  19. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment past, present and future (a review), Desalination, 228 (2008) 10–29.
  20. R. Valladares Linares, Z. Li, S. Sarp, S.S. Bucs, G. Amy, J.S. Vrouwenvelder, Forward osmosis niches in seawater desalination and wastewater reuse, Water Res., 66 (2014) 122–139.
  21. J. MacHarg, T.F. Seacord, B. Sessions, ADC baseline tests reveal trends in membrane performance, Int. Desal. Water Reuse Quart., 18 (2008) 30–39.
  22. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  23. N. Voutchkov, Considerations for selection of seawater filtration pretreatment system, Desalination, 261 (2010) 354–364.
  24. L.O. Villacorte, A.A. Tabatabai, D.M. Anderson, G.L. Amy, J.C. Schippers, M.D. Kennedy, Seawater reverse osmosis desalination and (harmful) algal blooms, Desalination, 360 (2015) 61–80.
  25. T.M. Missimer, N. Ghaffour, A.H.A. Dehwah, R.G. Maliva, G. Amy, Subsurface intakes for seawater reverse osmosis facilities: capacity limitation, water quality improvement, and economics, Desalination, 322 (2013) 37–51.
  26. K. Rahmawati, N. Ghaffour, C. Aubry, G.L. Amy, Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes, J. Membr. Sci., 423–424 (2012) 522–529.
  27. S. Lattemann, M.D. Kennedy, G. Amy, Seawater desalination — a green technology?, J. Water Supply Res. Technol. AQUA, 59 (2010) 134–151.
  28. N. Ghaffour, S. Lattemann, T. Missimer, S. Sinha, G. Amy, Renewable energy-driven innovative energy-efficient desalination technologies, Appl. Energy, 136 (2014) 1155–1165.
  29. R.J. Petersen, J.E. Cadotte, Thin-film Composite Reverse Osmosis Membrane, M.C. Porter, Ed., Handbook of Industrial Membrane Technology, Noyes Publication, New Jersey, 1990.
  30. J.E. Cadotte, Reverse Osmosis Membrane, Patent Application No. 4039440, 1977.
  31. A. Fane, C. Tang, R. Wang, Membrane technology for water: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis, Treatise Water Sci., 4 (2011) 301–335.
  32. J.R. Werber, C.O. Osuji, M. Elimelech, Materials for nextgeneration desalination and water purification membranes, Nat. Rev. Mater., 1 (2016) 16018.
  33. B.J.A. Tarboush, D. Rana, T. Matsuura, H.A. Arafat, R.M. Narbaitz, Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules, J. Membr. Sci., 325 (2008) 166–175.
  34. M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci., 4 (2011) 1946.
  35. Y. Wang, R. Ou, Q. Ge, H. Wang, T. Xu, Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane, Desalination, 330 (2013) 70–78.
  36. S. Zhao, L. Zou, Relating solution physicochemical properties to internal concentration polarization in forward osmosis, J. Membr. Sci., 379 (2011) 459–467.
  37. T.S. Chung, L. Luo, C.F. Wan, Y. Cui, G. Amy, What is next for forward osmosis (FO) and pressure retarded osmosis (PRO), Sep. Purif. Technol., 156 (2015) 856–860.
  38. P. Sukitpaneenit, T.S. Chung, High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production, Environ. Sci. Technol., 46 (2012) 7358–7365.
  39. R.L. McGinnis, N.T. Hancock, M.S. Nowosielski-Slepowron, G.D. McGurgan, Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines, Desalination, 312 (2013) 67–74.
  40. M. Elimelech, W. Philip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712.
  41. R. McGovern, J. Lienhard, On the potential of forward osmosis to energetically outperform reverse osmosis desalination, J. Membr. Sci., 469 (2014) 245–250.
  42. N.T. Hancock, N.D. Black, T.Y. Cath, A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes, Water Res., 46 (2012) 1145–1154.
  43. R. Valladares Linares, Z. Li, M. Abu-Ghdaib, C.H. Wei, G.L. Amy, J.S. Vrouwenvelder, Water harvesting from municipal wastewater via osmotic gradient: an evaluation of process performance, J. Membr. Sci., 447 (2013) 50–56.
  44. R. Valladares Linares, Z. Li, V. Yangali-Quintanilla, N. Ghaffour, G. Amy, T. Leiknes, H. Vrouwenvelder, Life cycle cost of a hybrid forward osmosis – low pressure reverse osmosis (FO–LPRO) system for seawater desalination and wastewater recovery, Water Res., 88 (2016) 225–234.
  45. D.L. Shaefer, J.R. Werber, H. Jaramillo, S. Lin, M. Elimelech, Forward osmosis: where are we now?, Desalination, 356 (2015) 271–284.
  46. S. Adham, A. Hussain, J.M. Matar, R. Dores, A. Janson, Application of membrane distillation for desalting brines from thermal desalination plants, Desalination, 314 (2013) 101–108.
  47. A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: a comprehensive review, Desalination, 287 (2012) 2–18.
  48. L.F. Dumée, K. Sears, J. Schütz, N. Finn, C. Huynh, S. Hawkins, M. Duke, S. Gray, Characterization and evaluation of carbon nanotube Bucky-Paper membranes for direct contact membrane distillation, J. Membr. Sci., 351 (2010) 36–43.
  49. L.M. Camacho, L. Dumée, J. Zhang, J. Li, M. Duke, J. Gomez, S. Gray, Advances in membrane distillation for water desalination and purification applications, Water, 5 (2013) 94–196.
  50. P. Wang, T.S. Chung, A new-generation asymmetric multibore hollow fiber membrane for sustainable water production via vacuum membrane distillation, Environ. Sci. Technol., 47 (2013) 6272–6278.
  51. L. Francis, N. Ghaffour, A.S. Alsaadi, S.P. Nunes, G.L. Amy, Performance evaluation of the DCMD process under bench scale and large scale module operating conditions, J. Membr. Sci., 445 (2014) 103–112.
  52. D. Winter, J. Koschikowski, M. Wieghaus, Desalination using membrane distillation: experimental studies on full scale spiral wound modules, J. Membr. Sci., 375 (2011) 104–112.
  53. M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?, Electrochim. Acta, 55 (2010) 3845–3856.
  54. L. Pan, X. Wang, Y. Gao, Y. Zhang, Y. Chen, Z. Sun, Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes, Desalination, 244 (2009) 139–143.
  55. P. Xu, J.E. Drewes, D. Heil, G. Wang, Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 42 (2008) 2605–2617.
  56. C.H. Hou, J.F. Huang, H.R. Lin, B.Y. Wang, Preparation of activated carbon sheet electrode assisted electrosorption process, J. Taiwan Inst. Chem. Eng., 43 (2012) 473–479.
  57. C.H. Hou, N.L. Liu, H.L. Hsu, W. Den, Development of multiwalled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization, Sep. Purif. Technol., 130 (2014) 7–14.
  58. C. Yan, L. Zou, R. Short, Single-walled carbon nanotubes and polyaniline composites for capacitive deionization, Desalination, 290 (2012) 125–129.
  59. D. Qadir, H. Mukhtar, L.K. Keong, Mixed matrix membranes for water purification applications, Sep. Purif. Rev., 46 (2017) 62–80.
  60. D. Emadzadeh, W.J. Lau, T. Matsuura, M. Rahbari-Sisakht, A.F. Ismail, A novel thin-film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination, Chem. Eng. J., 237 (2014) 70–80.
  61. H. Dong, L. Zhao, L. Zhang, H. Chen, C. Gao, Winston, W.S. Ho, High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination, J. Membr. Sci., 476 (2014) 373–383.
  62. A. Peyki, A. Rahimpour, M. Jahanshahi, Preparation and characterization of thin-film composite reverse osmosis membranes incorporated with hydrophilic SiO2 nanoparticles, Desalination, 368 (2015) 152–158.
  63. N. Niksefat, M. Jahanshahi, A. Rahimpour, The effect of SiO2 nanoparticles on morphology and performance of thin-film composite membranes for forward osmosis application, Desalination, 343 (2014) 140–146.
  64. R. Das, M.E. Ali, S.B. Abd Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification: a bright future in water desalination, Desalination, 336 (2014) 97–109.
  65. R. Das, S.B. Abd Hamid, M.E. Ali, A.F. Ismail, M.S.M. Annuar, S. Ramakrishna, Multifunctional carbon nanotubes in water treatment: the present, past and future, Desalination, 354 (2014) 160–179.
  66. P.S. Goh, A.F. Ismail, Graphene-based nanomaterial: the stateof- the-art material for cutting edge desalination technology, Desalination, 356 (2015) 115–128.
  67. K.A. Mahmoud, B. Mansoor, A. Mansour, M. Khraisheh, Functional graphene nanosheets: the next generation membranes for water desalination, Desalination, 356 (2015) 208–225.
  68. I. Akin, E. Zor, H. Bingol, M. Ersoz, Green synthesis of reduced graphene oxide/polyaniline composite and its application for salt rejection by polysulfone based composite membranes, J. Phys. Chem. B, 118 (2014) 5707–5716.
  69. A. Rodríguez-Calvo, G.A. Silva-Castro, F. Osorio, J. González- López, C. Calvo, Novel membrane materials for reverse osmosis desalination, Hydrol. Curr. Res., 5 (2014) 167, doi: 10.4172/2157–7587.1000167.
  70. D.A. Fedosov, A.V. Smirnov, E.E. Knyazeva, I.I. Ivanova, Zeolite membranes: synthesis, properties, and application, Pet. Chem., 51 (2012) 657–667.
  71. J. Coronas, J. Santamaria, State-of-the-art in zeolite membrane reactors, Top. Catal., 29 (2004) 29–44.
  72. M.S. Boroglu, M.A. Gurkaynak, Fabrication and characterization of silica modified polyimide–zeolite mixed matrix membranes for gas separation properties, Polym. Bull., 66 (2010) 463–478.
  73. B. Libby, W.H. Smyrl, E.L. Cussler, Polymer-zeolite composite membranes for direct methanol fuel cells, AIChE J., 49 (2003) 991–1001.
  74. T.C. Bowen, R.D. Noble, J.L. Falconer, Fundamentals and applications of pervaporation through zeolite membranes, J. Membr. Sci., 245 (2004) 1–33.
  75. H. Dong, X.Y. Qu, L. Zhang, L.H. Cheng, H.L. Chen, C.J. Gao, Preparation and characterization of surface-modified zeolite-polyamide thin film nanocomposite membranes for desalination, Desal. Water Treat., 34 (2011) 6–12.
  76. B. Zhu, Z. Hong, N. Milne, C.M. Doherty, L. Zou, Y.S. Lin, Desalination of seawater ion complexes by MFI-type zeolite membranes: temperature and long term stability, J. Membr. Sci., 453 (2014) 126–135.
  77. W. Xu, J. Dong, J. Li, J. Li, F. Wu, A novel method for the preparation of zeolite ZSM-5, J. Chem. Soc., Chem. Commun., 10 (1990) 755–756.
  78. L. Li, J. Dong, T. Nenoff, Transport of water and alkali metal ions through MFI zeolite membranes during reverse osmosis, Sep. Purif. Technol., 53 (2007) 42–48.
  79. L. Li, J. Dong, T.M. Nenoff, R. Lee, Desalination by reverse osmosis using MFI zeolite membranes, J. Membr. Sci., 243 (2004) 401–404.
  80. F. Jareman, J. Hedlund, J. Sterte, Effects of aluminum content on the separation properties of MFI membranes, Sep. Purif. Technol., 32 (2003) 159–163.
  81. M.C. Duke, J. O’Brien-Abraham, N. Milne, B. Zhu, J.Y.S. Lin, J.C. Diniz da Costa, Seawater desalination performance of MFI type membranes made by secondary growth, Sep. Purif. Technol., 68 (2009) 343–350.
  82. L. Li, N. Liu, B. McPherson, R. Lee, Enhanced water permeation of reverse osmosis through MFI-type zeolite membranes with high aluminum contents, Ind. Eng. Chem. Res., 46 (2007) 1584–1589.
  83. J. Lu, N. Liu, L. Li, R. Lee, Organic fouling and regeneration of zeolite membrane in wastewater treatment, Sep. Purif. Technol., 72 (2010) 203–207.
  84. M. Kazemimoghadam, New nanopore zeolite membranes for water treatment, Desalination, 251 (2010) 176–180.
  85. M. Fathizadeh, A. Aroujalian, A. Raisi, Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process, J. Membr. Sci., 375 (2011) 88–95.
  86. N. Liu, L. Li, B. McPherson, R. Lee, Removal of organics from produced water by reverse osmosis using MFI-type zeolite membranes, J. Membr. Sci., 325 (2008) 357–361.
  87. S.M. Rassoulinejad-Mousavi, J. Azamat, A. Khataee, Y. Zhang, Molecular dynamics simulation of water purification using zeolite MFI nanosheets, Sep. Purif. Technol., 234 (2020) 116080,
  88. F. Liu, B.-R. Ma, D. Zhou, Y. Xiang, L. Xue, Breaking through tradeoff of polysulfone ultrafiltration membranes by zeolite 4A, Microporous Mesoporous Mater., 186 (2014) 113–120.
  89. R. Han, S. Zhang, C. Liu, Y. Wang, X. Jian, Effect of NaA zeolite particle addition on poly(phthalazinone ether sulfone ketone) composite ultrafiltration (UF) membrane performance, J. Membr. Sci., 345 (2009) 5–12.
  90. D. Kunnakorn, T. Rirksomboon, P. Aungkavattana, N. Kuanchertchoo, D. Atong, S. Kulprathipanja, Performance of sodium A zeolite membranes synthesized via microwave and autoclave techniques for water–ethanol separation: recycle continuous pervaporation process, Desalination, 269 (2011) 78–83.
  91. P. Swenson, B. Tanchuk, E. Bastida, W. An, S.M. Kuznicki, Water desalination and de-oiling with natural zeolite membranes — potential application for purification of SAGD process water, Desalination, 286 (2012) 442–446.
  92. J. Caro, M. Noack, Zeolite membranes — recent developments and progress, Microporous Mesoporous Mater., 115 (2008) 215–233.
  93. J. Caro, M. Noack, P. Kolsch, R. Schafer, Zeolite membranes - state of their development and perspective, Microporous Mesoporous Mater., 38 (2000) 3–24.
  94. H. Huang, X. Qu, X. Ji, X. Gao, L. Zhang, H. Chen, L. Hoi, Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-1 nanozeolites, J. Mater. Chem. A, 1 (2013) 11343–11349.
  95. M. Pera-Titus, C. Fite, V. Sebastia, E. Lorente, J. Llorens, F. Cunill, Modeling pervaporation of ethanol/water mixtures within “real” zeolite NaA membranes, Ind. Eng. Chem. Res., 47 (2008) 3213–3224.
  96. S. Turgman-Cohen, J.C. Araque, E.M.V. Hoek, F.A. Escobedo, Molecular dynamics of equilibrium and pressure-driven transport properties of water through LTA-type zeolites, Langmuir, 29 (2013) 12389–12399.
  97. Z. Hu, Y. Chen, J. Jiang, Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation, J. Chem. Phys., 134 (2011) 134705,
  98. M. Tian, Y.N. Wang, R. Wang, Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes, Desalination, 370 (2015) 79–86.
  99. S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nat. Nanotechnol., 10 (2015) 459–464.
  100. D. Cohen-Tanugi, J.C. Grossman, Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation, Desalination, 366 (2015) 59–70.
  101. J. Wang, P. Zhang, B. Liang, Y. Liu, T. Xu, L. Wang, B. Cao, K. Pan, Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment, ACS Appl. Mater. Interfaces, 8 (2016) 6211–6218.
  102. M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol., 47 (2013) 3715–3723.
  103. J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312 (2006) 1034–1037.
  104. J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes, Nat. Nanotechnol., 12 (2017) 546–550.
  105. K. Sears, L. Dumée, J. Schütz, M. She, C. Huynh, S. Hawkins, M. Duke, S. Gray, Recent developments in carbon nanotube membranes for water purification and gas separation, Materials, 3 (2010) 127–149.
  106. M. Rashid, S.F. Ralph, Carbon nanotube membranes: synthesis, properties, and future filtration applications, Nanomaterials, 7 (2017) 1–28.
  107. J.A. Thomas, A.J.H. McGaughey, Water flow in carbon nanotubes: transition to subcontinuum transport, Phys. Rev. Lett., 102 (2009) 184502.
  108. R.H. Tunuguntla, R.Y. Henley, Y.C. Yao, T.A. Pham, M. Wanunu, A. Noy, Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins, Science, 357 (2017) 792–796.
  109. B. Corry, Water and ion transport through functionalised carbon nanotubes: implications for desalination technology, Energy Environ Sci., 4 (2011) 751–759.
  110. Y. Chan, J.M. Hill, Ion selectivity using membranes comprising functionalized carbon nanotubes, J. Math. Chem., 53 (2013) 1258–1273.
  111. C.H. Ahn, Y. Baek, C. Lee, S.O. Kim, S. Kim, S. Lee, Carbon nanotube-based membranes: fabrication and application to desalination, J. Ind. Eng. Chem., 18 (2012) 1551–1559.
  112. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414 (2001) 188–190.
  113. A.S. Brady-Estévez, S. Kang, M. Elimelech, A single‐walledcarbon‐ nanotube filter for removal of viral and bacterial pathogens, Small, 4 (2008) 481–484.
  114. X. Peng, J. Jin, E.M. Ericsson, I. Ichinose, General method for ultrathin free-standing films of nanofibrous composite materials, J. Am. Chem. Soc., 129 (2007) 8625–8633.
  115. L. Zhang, G.Z. Shi, S. Qiu, L.H. Cheng, H.L. Chen, Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes, Desal. Water Treat., 34 (2011) 19–24.
  116. S. Kar, R.C. Bindal, P.K. Tewari, Carbon nanotube membranes for desalination and water purification: challenges and opportunities, Nano Today, 7 (2012) 385–389.
  117. S.M. Park, J. Jung, S. Lee, Y. Baek, J. Yoon, D.K. Seo, Fouling and rejection behavior of carbon nanotube membranes, Desalination, 343 (2014) 180–186.
  118. M. Bhadra, S. Roy, S. Mitra, Enhanced desalination using carboxylated carbon nanotube immobilized membranes, Sep. Purif. Technol., 120 (2013) 373–377.
  119. F. Fornasiero, H.G. Park, J.K. Holt, M. Stadermann, C.P. Grigoropoulos, A. Noy, Ion exclusion by sub-2-nm carbon nanotube pores, Proc. Natl. Acad. Sci., 105 (2008) 17250–17255.
  120. C.F. de Lannoy, E. Soyer, M.R. Wiesner, Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization, J. Membr. Sci., 447 (2013) 395–402.
  121. W.F. Chan, H.Y. Chen, A. Surapathi, M.G. Taylor, X. Shao, E. Marand, J.K. Johnson, Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination, ACS Nano, 7 (2013) 5308–5319.
  122. M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets, J. Hazard. Mater., 185 (2011) 140–147.
  123. M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials, Environ. Sci. Technol., 42 (2008) 5843–5859.
  124. L. Dumee, J.L. Campbell, K. Sears, J. Schutz, N. Finn, M. Duke, S. Gray, The Impact of hydrophobic coating on the performance of carbon nanotube bucky paper membranes in membrane distillation, Desalination, 283 (2011) 64–67.
  125. Y. You, V. Sahajwalla, M. Yoshimura, R.K. Joshi, Graphene and graphene oxide for desalination, Nano, 8 (2016) 117–119.
  126. R. Nair, H. Wu, P. Jayaram, I. Grigorieva, A. Geim, Unimpeded permeation of water through helium-leak–tight graphenebased membranes, Science, 335 (2012) 442–444.
  127. N. Songa, X. Gao, Z. Mac, X. Wanga, Y. Weia, C. Gao, A review of graphene-based separation membrane: materials, characteristics, preparation and applications, Desalination, 437 (2018) 59–72.
  128. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558–1565.
  129. M. Hu, B. Mi, Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction, J. Membr. Sci., 469 (2014) 80–87.
  130. X. Wang, Z. Xiong, Z. Liu, T. Zhang, Exfoliation at the liquid/ air Interface to assembler reduced graphene oxide ultrathin films for a flexible noncontact sensing device, Adv. Mater., 27 (2015) 1370–1375.
  131. X. Chen, G. Liu, H. Zhang, Y. Fan, Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol, Chin. J. Chem. Eng., 23 (2015) 1102–1109.
  132. M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud’homme, I.K. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater., 19 (2007) 4396–4404.
  133. J. Borges, J.F. Mano, Molecular interactions driving the layerby- layer assembly of multilayers, Chem. Rev., 114 (2014) 8883–8942.
  134. Y. Xiang, S. Lua, S.P. Jiang, Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors, Chem. Soc. Rev., 41 (2012) 7291–7321.
  135. W.L. Xu, C. Fang, F. Zhou, Z. Song, Q. Liu, R. Qiao, M. Yu, Selfassembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification, Nano Lett., 17 (2017) 2928–2933.
  136. C. Yu, B. Zhang, F. Yana, J. Zhao, J. Li, L. Li, J. Li, Engineering nanoporous graphene oxide by hydroxyl radicals, Carbon, 105 (2016) 291–296.
  137. B. Mi, Graphene oxide membranes for ionic and molecular sieving, Science, 343 (2014) 740–742.
  138. Y. Yuan, X. Gao, Y. Wei, X. Wang, J. Wang, Y. Zhang, C. Gao, Enhanced desalination performance of carboxyl functionalized graphene oxide nanofiltration membranes, Desalination, 405 (2017) 29–39.
  139. A. Nicolaï, B.G. Sumpter, V. Meunier, Tunable water desalination across graphene oxide framework membranes, Phys. Chem. Chem. Phys., 16 (2014) 8646–8654.
  140. D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett., 12 (2012) 3602–3608.
  141. Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater., 23 (2013) 3693–3700.
  142. R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science, 343 (2014) 752–754.
  143. C. Xu, A. Cui, Y. Xu, X. Fu, Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification, Carbon, 62 (2013) 465–471.
  144. N. Wang, S. Ji, G. Zhang, J. Li, L. Wang, Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation, Chem. Eng. J., 213 (2012) 318–329.
  145. P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu, H. Zhu, Selective ion penetration of graphene oxide membranes, ACS Nano, 7 (2012) 428–437.
  146. S. Xia, M. Ni, Preparation of polyvinylidene fluoride membranes with graphene oxide addition for natural organic matter removal, J. Membr. Sci., 473 (2015) 54–62.
  147. M.E.A. Ali, L. Wang, X. Wang, X. Feng, Thin-film composite membranes embedded with graphene oxide for water desalination, Desalination, 386 (2016) 67–76.
  148. H.M. Hegab, L. Zou, Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification, J. Membr. Sci., 484 (2015) 95–106.
  149. Y. Manawi, V. Kochkodan, M. Ali Hussein, M.A. Khaleel, M. Khraisheh, N. Hilal, Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination?, Desalination, 391 (2016) 69–88.
  150. Z. Yang, X.H. Ma, C.Y. Tang, Recent development of novel membranes for desalination, Desalination, 434 (2018) 37–59.
  151. A. Anand, B. Unnikrishnan, J.Y. Mao, H.J. Lin, C.C. Huang, Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling – a review, Desalination, 429 (2018) 119–133.
  152. F. Perreault, M.E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets, Environ. Sci. Technol. Lett., 1 (2014) 71–76.
  153. W. Choi, J. Choi, J. Bang, J.H. Lee, Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications, ACS Appl. Mater. Interfaces, 5 (2013) 12510–12519.
  154. S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano, 5 (2011) 6971–6980.
  155. S. Wang, S. Liang, P. Liang, X. Zhang, J. Sun, S. Wu, X. Huang, In-situ combined dual-layer CNT/PVDF membrane for electrically-enhanced fouling resistance, J. Membr. Sci., 491 (2015) 37–44.
  156. Y. Wang, J. Zhu, H. Huang, H.H. Cho, Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: capabilities and potential mechanisms, J. Membr. Sci., 479 (2015) 165–174.
  157. V. Vatanpour, N. Zoqi, Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes, Appl. Surf. Sci., 396 (2017) 1478–1489.
  158. M. Adamczak, G. Kamińska, J. Bohdziewicz, Preparation of polymer membranes by in-situ interfacial polymerization, Int. J. Polym. Sci., 2019 (2019) 6217924, 13 pages, https://doi. org/10.1155/2019/6217924.
  159. J. Yin, G. Zhu, B. Deng, Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification, Desalination, 379(2016) 93–101.
  160. K. Xu, B. Feng, C. Zhou, A. Huang, Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination, Chem. Eng. Sci., 146 (2016) 159–165.
  161. S.G. Kim, D.H. Hyeon, J.H. Chun, B.H. Chun, S.H. Kim, Novel thin nanocomposite RO membranes for chlorine resistance, Desal. Water Treat., 51 (2013) 6338–6345.
  162. V. Kochkodan, D.J. Johnson, N. Hilal, Polymeric membranes: surface modification for minimizing (bio)colloidal fouling, Adv. Colloid Interface Sci., 206 (2014) 116–140.
  163. Y. Tu, M. Lv, P. Xiu, T. Huynh, M. Zhang, M. Castelli, Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets, Nat. Nanotechnol., 8 (2013) 594–601.
  164. X.F. Sun, J. Qin, P.F. Xia, B.B. Guo, C.M. Yang, C. Song, S.G. Wang, Graphene oxide–silver nanoparticle membrane for biofouling control and water purification, Chem. Eng. J., 281 (2015) 53–59.
  165. W. Ma, A. Soroush, T. Van Anh Luong, S. Rahaman, Cysteamine- and graphene oxide-mediated copper nanoparticle decoration on reverse osmosis membrane for enhanced anti-microbial performance, J. Colloid Interface Sci., 501 (2017) 330–340.
  166. G.S. Lai, W.J. Lau, P.S. Goh, A.F. Ismail, N. Yusof, Y.H. Tan, Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance, Desalination, 387 (2016) 14–24.
  167. S. Bano, A. Mahmood, S.J. Kim, K.H. Lee, Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties, J. Mater. Chem. A, 3 (2015) 2065–2071.
  168. M. Safarpour, V. Vatanpour, A. Khataee, M. Esmaeili, Development of a novel high flux and fouling-resistant thinfilm composite nanofiltration membrane by embedding reduced graphene oxide/TiO2, Sep. Purif. Technol., 154 (2015) 96–107.
  169. M. Safarpour, A. Khataee, V. Vatanpour, Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance, J. Membr. Sci., 489 (2015) 43–54.
  170. J. Wang, X. Gao, J. Wang, Y. Wei, Z. Li, C. Gao, O‑(Carboxymethyl)‑chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties, ACS Appl. Mater. Interfaces, 7 (2015) 4381–4389.
  171. X. Chen, M. Qiu, H. Ding, K. Fu, Y. Fan, A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification, Nano, 8 (2016) 5696–5705.
  172. S.M. Xue, Z.L. Xu, Y.J. Tang, C.H. Ji, Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs), ACS Appl. Mater. Interfaces, 8 (2016) 19135–19144.
  173. O.K. Park, N.H. Kim, K.T. Lau, J.H. Lee, Effect of surface treatment with potassium persulfate on dispersion stability of multi-walled carbon nanotubes, Mater. Lett., 64 (2010) 718–721.
  174. K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes, Small, 1 (2005) 180–192.
  175. J. Yin, B. Deng, Polymer-matrix nanocomposite membranes for water treatment, J. Membr. Sci., 479 (2015) 256–275.
  176. T.V. Ratto, J.K. Holt, A.W. Szmodis, Membranes with Embedded Nanotubes for Selective Permeability, Patent Application No. 20100025330, 2010.
  177. H. Zhao, S. Qiu, L. Wu, L. Zhang, H. Chen, C. Gao, Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes, J. Membr. Sci., 450 (2014) 249–256.
  178. H.J. Kim, K. Choi, Y. Baek, D. Kim, J. Shim, J. Yoon, J. Lee, High-Performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions, ACS Appl. Mater. Interfaces, 6 (2014) 2819–2829.
  179. A. Tiraferri, C.D. Vecitis, M. Elimelech, Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties, ACS Appl. Mater. Interfaces, 3 (2011) 2869–2877.
  180. J. Zhang, Z. Xu, M. Shan, B. Zhou, Y. Li, B. Li, J. Niu, X. Qian, Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes, J. Membr. Sci., 448 (2013) 81–92.
  181. L. Madhura, S. Kanchi, M.I. Sabela, S. Singh, K. Bisetty, Inamuddin, Membrane technology for water purification, Environ. Chem. Lett., 16 (2018) 343–365.
  182. M. Bodzek, Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Arch. Environ. Prot., 45 (2019) 4–19.
  183. B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane, Desalination, 313 (2013) 199–207.
  184. J. Lee, H.R. Chae, Y.J. Won, K. Lee, C.H. Lee, H.H. Lee, I.C. Kim, J.M. Lee, Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment, J. Membr. Sci., 448 (2013) 223–230.
  185. Z. Xu, J. Zhang, M. Shan, Y. Li, B. Li, J. Niu, B. Zhou, X. Qian, Organosilane functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes, J. Membr. Sci., 458 (2014) 1–13.
  186. D. Arockiasamy, S. Lawrence, J. Alam, M. Alhoshan, Carbon nanotubes-blended poly (phenylene sulfone) membranes for ultrafiltration applications, Appl. Water Sci., 3 (2012) 93–103.
  187. J. Choi, J. Jegal, W. Kim, Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes, J. Membr. Sci., 284 (2006) 406–415.
  188. P. Shah, C.N. Murthy, Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal, J. Membr. Sci., 437 (2013) 90–98.
  189. J. Yin, G. Zhu, B. Deng, Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment, J. Membr. Sci., 437 (2013) 237–248.
  190. A. Khalid, A.A. Al-Juhani, O.C. Al-Hamouz, T. Laoui, Z. Khan, M.A. Atieh, Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination, Desalination, 367 (2015) 134–144.
  191. F. Liu, M.R.M. Abed, K. Li, Preparation and characterization of polyvinylidene fluoride (PVDF) based ultrafiltration membranes using nano γ-Al2O3, J. Membr. Sci., 366 (2011) 97–103.
  192. A.M. Dimiev, L.B. Alemany, J.M. Tour, Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model, ACS Nano, 7 (2013) 576–588.
  193. N. Pezeshk, D. Rana, R.M. Narbaitz, T. Matsuura, Novel modified PVDF ultrafiltration flat-sheet membranes, J. Membr. Sci., 389 (2012) 280–286.
  194. V. Vatanpour, S.S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes, Sep. Purif. Technol., 90 (2012) 69–82.
  195. H. Zhao, L. Wu, Z. Zhou, L. Zhang, H. Chen, Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide, Phys. Chem. Chem. Phys., 15 (2013) 9084–9092.
  196. J.N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K.P. Ryan, C. Belton, A. Fonseca, J.B. Nagy, Y.K. Gun’ko, W.J. Blau, High performance nanotube-reinforced plastics: understanding the mechanism of strength increase, Adv. Funct. Mater., 14 (2004) 791–798.
  197. F. Dalmas, L. Chazeau, C. Gauthier, K. Masenelli-Varlot, R. Dendievel, J.Y. Cavaillé, L. Forró, Multiwalled carbon nanotube/polymer nanocomposites: processing and properties, J. Polym. Sci., Part B: Polym. Phys., 43 (2005) 1186–1197.
  198. A. Dufresne, M. Paillet, J.L. Putaux, R. Canet, F. Carmona, P. Delhaes, S. Cui, Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites, J. Mater. Sci., 37 (2002) 3915–3923.
  199. N. Mehwish, A. Kausar, M. Siddiq, High-performance polyvinylidene fluoride/poly (styrene – butadiene – styrene)/ functionalized MWCNTs-SCN-Ag nanocomposite membranes, Iran. Polym. J., 24 (2015) 549–559.
  200. H.A. Shawky, S. Chae, S. Lin, M.R. Wiesner, Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment, Desalination, 272 (2011) 46–50.
  201. M. Amini, M. Jahanshahi, A. Rahimpour, Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes, J. Membr. Sci., 435 (2013) 233–241.
  202. L. Dumée, J. Lee, K. Sears, B. Tardy, M. Duke, S. Gray, Fabrication of thin-film composite poly(amide)-carbonnanotube supported membranes for enhanced performance in osmotically driven desalination systems, J. Membr. Sci., 427 (2013) 422–430.
  203. K. Goh, L. Setiawan, L. Wei, W. Jiang, R. Wang, Y. Chen, Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process, J. Membr. Sci., 446 (2013) 244–254.
  204. J.G. Lee, E.J. Lee, S. Jeong, J. Guo, A.K. An, H. Guo, J. Kim, T. Leiknes, N. Ghaffour, Theoretical modeling and experimental validation of transport and separation properties of carbon nanotube electrospun membrane distillation, J. Membr. Sci., 526 (2017) 395–408.
  205. V. Vatanpour, M. Esmaeili, M. Hossein, D. Abadi, Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes, J. Membr. Sci., 466 (2014) 70–81.
  206. E.S. Kim, G. Hwang, M. Gamal El-Din, Y. Liu, Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment, J. Membr. Sci., 394–395 (2012) 37–48.
  207. J. Zheng, M. Li, K. Yu, J. Hu, X. Zhang, L. Wang, Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property, J. Membr. Sci., 524 (2017) 344–353.
  208. J.-N. Shen, Y.C. Chao, R.H. Min, G.C. Jie, B. Van Der Bruggen, Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization, J. Membr. Sci., 442 (2013) 18–26.
  209. L. Shen, S. Xiong, Y. Wang, Graphene oxide incorporated thin-film composite membranes for forward osmosis applications, Chem. Eng. Sci., 143 (2016) 194–205.
  210. L. Jin, Z. Wang, S. Zheng,, B. Mi, Polyamide-crosslinked graphene oxide membrane for forward osmosis, J. Membr. Sci., 545 (2018) 11–18.
  211. W.S. Hung, Y.H. Chiao,, A. Sengupta, Y.W. Lin, S.R. Wickramasinghe, C.C. Hu, H.A. Tsai, K.R. Lee, J.Y. Lai, Tuning the interlayer spacing of forward osmosis membranes based on ultrathin graphene oxide to achieve desired performance, Carbon, 142 (2019) 337–345.
  212. W. Suwaileh, D. Johnson, S. Khodabakhshi, N. Hilal, Development of forward osmosis membranes modified by cross-linked layer-by-layer assembly for brackish water desalination, J. Membr. Sci., 583 (2019) 267–277.
  213. H. Zarrabi, M. Ehsan, V. Vatanpour, A. Shockravi, M. Safarpour, Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube, Desalination, 394 (2016) 83–90.
  214. S.H. Kim, T.M. Lee, Performance improvement of membrane distillation using carbon nanotubes, Membr. Water Treat., 7 (2016) 367–375.
  215. M. Bhadra, S. Roy, S. Mitra, Desalination across a graphene oxide membrane via direct contact membrane distillation, Desalination, 378 (2016) 37–43.
  216. C. Athanasekou, A. Sapalidis, I. Katris, E. Savopoulou, K. Beltsios, T. Tsoufis, A. Kaltzoglou, P. Falaras, G. Bounos, M. Antoniou, P. Boutikos, G. Em. Romanos, Mixed matrix PVDF/graphene and composite‐skin PVDF/graphene oxide membranes applied in membrane distillation, Polym. Eng. Sci., 59 (2019) E262–E278.
  217. Y. Wimalasiri, L. Zou, Carbon nanotube/graphene composite for enhanced capacitive deionization performance, Carbon N.Y., 59 (2013) 464–471.
  218. Y. Wang, L. Zhang, Y. Wu, S. Xu, J. Wang, Polypyrrole/carbon nanotube composites as cathode material for performance enhancing of capacitive deionization technology, Desalination, 354 (2014) 62–67.
  219. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water Res., 42 (2008) 4923–4928.
  220. Y. Liu, L. Pan, X. Xu, T. Lu, Z. Sun, D.H.C. Chua, Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes, Electrochim. Acta, 130 (2014) 619–624.