References

  1. P. Wang, T.S. Chung, Recent advances in membrane distillation processes: membrane development, configuration design and application exploring, J. Membr. Sci., 474 (2015) 39–56.
  2. L. Eykens, K. De Sitter, C. Dotremont, L. Pinoy, B. Van der Bruggen, Membrane synthesis for membrane distillation: a review, Sep. Purif. Technol., 182 (2017) 36–51.
  3. M. Rezaei, D.M. Warsinger, J.H. Lienhard V, M.C. Duke, T. Matsuura, W.M. Samhaber, Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention, Water Res., 139 (2018) 329–352.
  4. D.M. Warsinger, J. Swaminathan, E. Guillen-Burrieza, H.A. Arafat, J.H. Lienhard V, Scaling and fouling in membrane distillation for desalination applications: a review, Desalination, 356 (2015) 294–313.
  5. L.D. Tijing, Y.C. Woo, J.-S. Choi, S. Lee, S.-H. Kim, H.K. Shon, Fouling and its control in membrane distillation – a review, J. Membr. Sci., 475 (2015) 215–244.
  6. D.L.M.M. Mendez, Ch. Castel, C. Lemaitre, E. Favre, Membrane distillation (MD) processes for water desalination applications. Can dense selfstanding membranes compete with microporous hydrophobic materials?, Chem. Eng. Sci., 188 (2018) 84–96.
  7. N. Thomas, M.O. Mavukkandy, S. Loutatidou, H.A. Arafat, Membrane distillation research and implementation: lessons from the past five decades, Sep. Purif. Technol., 189 (2017) 108–127.
  8. J.E. Efome, M. Baghbanzadeh, D. Rana, T. Matsuura, C.Q. Lan, Effects of superhydrophobic SiO2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation, Desalination, 373 (2015) 47–57.
  9. M. Rezaeia, D.M. Warsinger, J.H. Lienhard V, W.M. Samhaber, Wetting prevention in membrane distillation through superhydrophobicity and recharging an air layer on the membrane surface, J. Membr. Sci., 530 (2017) 42–52.
  10. S.R. Krajewski, W. Kujawski, M. Bukowska, C. Picard, A. Larbot, Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions, J. Membr. Sci., 281 (2006) 253–259.
  11. K. Xu, Y. Cai, N.T. Hassankiadeh, Y. Cheng, X. Li, X. Wang, Z. Wang, E. Drioli, Z. Cui, ECTFE membrane fabrication via TIPS method using ATBC diluent for vacuum membrane distillation, Desalination, 456 (2019) 13–22.
  12. N.F. Himma, S. Anisah, N. Prasetya, I.G. Wenten, Advances in preparation, modification, and application of polypropylene membrane, Polym. Eng., 36 (2016) 329–362.
  13. M. Gryta, Investigations of a membrane distillation pilot plant with a capillary module, Desal. Water Treat., 64 (2017) 279–286.
  14. H.C. Duong, A.R. Chivas, B. Nelemans, M. Duke, S. Gray, T.Y. Cath, L.D. Nghiem, Treatment of RO brine from CSG produced water by spiral-wound air gap membrane distillation - a pilot study, Desalination, 366 (2015) 121–129.
  15. F. Banat, N. Jwaied, Autonomous membrane distillation pilot plant unit driven by solar energy: experiences and lessons learned, Int. J. Sustainable Water Environ. Syst., 1 (2010) 21–24.
  16. D. Winter, J. Koschikowski, M. Wieghaus, Desalination using membrane distillation: experimental studies on full scale spiral wound modules, J. Membr. Sci., 375 (2011) 104–112.
  17. R. Schwantes, A. Cipollina, F. Gross, J. Koschikowski, D. Pfeifle, M. Rolletschek, V. Subiela, Membrane distillation: solar and waste heat driven demonstration plants for desalination, Desalination, 323 (2013) 93–106.
  18. L. Francis, N. Ghaffour, A.S. Alsaadi, S.P. Nunes, G.L. Amy, Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions, J. Membr. Sci., 455 (2014) 103–112.
  19. S. Tavakkoli, O.R. Lokare, R.D. Vidic, V. Khanna, A technoeconomic assessment of membrane distillation for treatment of Marcellus shale produced water, Desalination, 416 (2017) 24–34.
  20. Y. Zhang, Y. Penga, S. Jia, J. Qi, S. Wang, Numerical modeling and economic evaluation of two multi-effect vacuum membrane distillation (ME-VMD) processes, Desalination, 419 (2017) 39–48.
  21. Y.-J. Wang, Z.-P. Zhao, Z.-Y. Xi, S.-Y. Yan, Microporous polypropylene membrane prepared via TIPS using environmentfriendly binary diluents and its VMD performance, J. Membr. Sci., 548 (2018) 332–344.
  22. N. Tang, H. Han, L. Yuan, L. Zhang, X. Wang, P. Cheng, Preparation of a hydrophobically enhanced antifouling isotactic polypropylene/silicone dioxide flat-sheet membrane via thermally induced phase separation for vacuum membrane distillation, J. Appl. Polym. Sci., 42615 (2015) 1–11.
  23. K. Tarabasz, J. Krzysztoforski, M. Szwast, M. Henczka, Investigation of the effect of treatment with supercritical carbon dioxide on structure and properties of polypropylene microfiltration membranes, Mater. Lett., 163 (2016) 54–57.
  24. X. Zhang, D. Zhang, T. Liu, Influence of nucleating agent on properties of isotactic polypropylene, Energy Procedia, 17 (2012) 1829–1835.
  25. N. Tang, Q. Jia, H. Zhang, J. Li, S. Cao, Preparation and morphological characterization of narrow pore size distributed polypropylene hydrophobic membranes for vacuum membrane distillation via thermally induced phase separation, Desalination, 256 (2010) 27–36.
  26. Y.K. Lin, G. Chen, J. Yang, X.L. Wang, Formation of isotactic polypropylene membranes with bicontinuous structure and good strength via thermally induced phase separation method, Desalination, 236 (2009) 8–15.
  27. M. Gryta, The application of polypropylene membranes for production of fresh water from brines by membrane distillation, Chem. Pap., 71 (2017) 775–784.
  28. M. Gryta, The long-term studies of osmotic membranes distillation, Chem. Pap., 72 (2018) 99–107.
  29. M. Gryta, Wettability of polypropylene capillary membranes during the membrane distillation process, Chem. Pap., 66 (2012) 92–98.
  30. M. Gryta, Long-term performance of membrane distillation process, J. Membr. Sci., 265 (2005) 153–159.
  31. A. Makhlouf, H. Satha, D. Frihi, S. Gherib, R. Seguela, Optimization of the crystallinity of polypropylene/submicronictalc composites: the role of filler ratio and cooling rate, eXPRESS Polym. Lett., 10 (2016) 237–247.
  32. T.L.S. Silva, S. Morales-Torres, J.L. Figueiredo, A.M.T. Silva, Multi-walled carbon nanotube/PVDF blended membranes with sponge- and finger-like pores for direct contact membrane distillation, Desalination, 357 (2015) 233–245.
  33. M.S. Fahmey, A.-H.M. El-Aassar, M.M. Abo-Elfadel, A.S. Orabi, R. Das, Comparative performance evaluations of nanomaterials mixed polysulfone: a scale-up approach through vacuum enhanced direct contact membrane distillation for water desalination, Desalination, 451 (2019) 111–116.
  34. K.A. Iyer, J.M. Torkelson, Importance of superior dispersion versus filler surface modification in producing robust polymer nanocomposites: the example of polypropylene/nanosilica hybrids, Polymer, 68 (2015) 147–157.
  35. M. Bhadra, S. Roy, S. Mitra, Flux enhancement in direct contact membrane distillation by implementing carbon nanotube immobilized PTFE membrane, Sep. Purif. Technol., 161 (2016) 136–143.
  36. M. Gryta, Degradation of polypropylene membranes applied in membrane distillation crystallizer, Crystals, 6 (2016) 33–47.
  37. V.A. Alvarez, C.J. Pérez, Effect of different inorganic filler over isothermal and non-isothermal crystallization of polypropylene homopolymer, J. Therm. Anal. Calorim., 107 (2012) 633–643.
  38. B. Luo, J. Zhang, X. Wang, Y. Zhou, J. Wen, Effects of nucleating agents and extractants on the structure of polypropylene microporous membranes via thermally induced phase separation, Desalination, 192 (2006) 142–150. Available at: https://doi.org/10.1016/j.desal.2005.10.013.
  39. O. Ammar, Y. Bouaziz, N. Haddar, N. Mnif, Talc as reinforcing filler in polypropylene compounds: effect on morphology and mechanical properties, Polym. Sci., 3 (2017) 1–7.
  40. O.A. Hernández-Aguirre, A. Núñez-Pineda, M. Tapia-Tapia, R.M. Gómez Espinosa, Surface modification of polypropylene membrane using biopolymers with potential applications for metal ion removal, J. Chem., 2016 (2016) 1–11. Available at: https://doi.org/10.1155/2016/2742013.
  41. F. Sadeghi, A. Ajji, P.J. Carreau, Analysis of microporous membranes obtained from polypropylene films by stretching, J. Membr. Sci., 292 (2007) 62–71.
  42. M.-C. Yang, J.-S. Perng, Microporous polypropylene tubular membranes via thermally induced phase separation using a novel solvent-camphene, J. Membr. Sci., 187 (2001) 13–22.
  43. W. Yave, R. Quijada, D. Serafini, D.R. Lloyd, Effect of the polypropylene type on polymer–diluent phase diagrams and membrane structure in membranes formed via the TIPS process Part II. Syndiotactic and isotactic polypropylenes produced using metallocene catalysts, J. Membr. Sci., 263 (2005) 154–159.
  44. P. Chammingkwan, F. Yamaguchi, M. Terano, T. Taniike, Influence of isotacticity and its distribution on degradation behavior of polypropylene, Polym. Degrad. Stab., 143 (2017) 253–258.
  45. Y. Lv, Y. Huang, M. Kong, G. Li, Improved thermal oxidation stability of polypropylene films in the presence of b-nucleating agent, Polym. Test., 32 (2013) 179–186.
  46. Z. Li, D. Rana, Z. Wang, T. Matsuura, Ch.Q. Lan, Synergic effects of hydrophilic and hydrophobic nanoparticles on performance of nanocomposite distillation membranes: an experimental and numerical study, Sep. Purif. Technol., 202 (2018) 45–58.
  47. S. Moulik, F.D. Kumar, K. Archana, S. Sridhar, Enrichment of hydrazine from aqueous solutions by vacuum membrane distillation through microporous polystyrene membranes of enhanced hydrophobicity, Sep. Purif. Technol., 203 (2018) 159–167.
  48. H. Matsuyama, H. Okafuji, T. Maki, M. Teramoto, N. Kubota, Preparation of polyethylene hollow fiber membrane via thermally induced phase separation, J. Membr. Sci., 223 (2003) 119–126.
  49. J.J. Kim, J.R. Hwang, U.Y. Kim, S.S. Kim, Operation parameters of melt spinning of polypropylene hollow fiber membranes, J. Membr. Sci., 108 (1995) 25–36.
  50. S.G. Echeverrigaray, R.C.D. Cruz, R.V.B. Oliveira, Reactive processing of a non-additivated isotactic polypropylene: mechanical and morphological properties on molten and solid states, Polym. Bull., 70 (2013) 1237–1250.
  51. W. Yave, R. Quijada, M. Ulbricht, R. Benavente, Syndiotactic polypropylene as potential material for the preparation of porous membranes via thermally induced phase separation (TIPS) process, Polymer, 46 (2005) 11582–11590.
  52. B. Lotz, α and β phases of isotactic polypropylene: a case of growth kinetics ‘phase reentrency’ in polymer crystallization, Polymer, 39 (1998) 4561–4567.
  53. H. Zhang, B. Li, D. Sun, X. Miao, Y. Gu, SiO2-PDMS-PVDF hollow fiber membrane with high flux for vacuum membrane distillation, Desalination, 429 (2018) 33–43.
  54. L. Barbeş, C. Rădulescu, C. Stihi, ATR-FTIR spectrometry characterisation of polymeric materials, Rom. Rep. Phys., 66 (2014) 765–777.
  55. S. Fontanella, S. Bonhomme, J.-M. Brusson, S. Pitteri, G. Samuel, G. Pichon, J. Lacoste, D. Fromageot, J. Lemaire, A.-M. Delort, Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or Co, Polym. Degrad. Stab., 98 (2013) 875–884.
  56. M.J. Cozad, D.A. Grant, S.L. Bachman, D.N. Grant, B.J. Ramshaw, S.A. Grant, Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: spectral and thermal analysis, J. Biomed. Mater. Res. B, 94B (2010) 455–462.
  57. M. Gryta, Study of NaCl permeability through a non-porous polypropylene film, J. Membr. Sci., 504 (2016) 66–74.
  58. M. Gryta, J. Grzechulska-Damszel, A. Markowska, K. Karakulski, The influence of polypropylene degradation on the membrane wettability during membrane distillation, J. Membr. Sci., 326 (2009) 493–502.
  59. D. Bertin, M. Leblanc, S.R.A. Marque, D. Siri, Polypropylene degradation: theoretical and experimental investigations, Polym. Degrad. Stab., 95 (2010) 782–791.