References
  -  X.-H. Chen, Z.-X. Zeng, W.-L. Xue, T. Pu, Solubility of
    2,6-diaminopyridine in toluene, o-xylene, ethylbenzene,
    methanol, ethanol, 2-propanol, and sodium hydroxide solutions,
    J. Chem. Eng. Data, 52 (2007) 1911–1915. 
 
  -  R. Norris Shreve, M.W. Swaney, E.H. Riechers, Studies in
    azo dyes. I. Preparation and bacteriostatic properties of azo
    derivatives of 2,6-diaminopyridine, J. Am. Chem. Soc., 65 (1943)
    2241–2243. 
 
  -  A.A. Shoukry, S.R. Al-Mhayawi, Synthesis, characterization,
    biological activity and equilibrium studies of cadmium(II) with
    2,6-diaminopyridine and various bio-relevant ligands, Eur. J.
    Chem., 4 (2013) 260–267. 
 
  -  A.A. Shoukry, S.R. Al-Mhayawi, Solution equilibria of binary
    and ternary complexes involving zinc(II) with 2,6-diaminopyridine
    and various biologically relevant ligands, J. Solution
    Chem., 44 (2015) 2073–2089. 
 
  -  R.M. Alghanmi, M.M. Habeeb, Spectral and solvation effect
    studies on charge transfer complex of 2,6-diaminopyridine
    with chloranilic acid, J. Mol. Liq., 181 (2013) 20–28. 
 
  -  D.P. Singh, V. Malik, K. Kumar, C. Sharma, K.R. Aneja,
    Macrocyclic metal complexes derived from 2,6-diaminopyridine
    and isatin with their antibacterial and spectroscopic studies,
    Spectrochim. Acta, Part A, 76 (2010) 45–49. 
 
  -  E.V. Pakhmutova, A.E. Malkov, T.B. Mikhailova, A.A. Sidorov,
    I.G. Fomina, G.G. Aleksandrov, V.M. Novotortsev, V.N. Ikorskii,
    I.L. Eremenko, Formation of bi- and tetranuclear cobalt(II)
    trimethylacetate complexes with 2-amino-5-methylpyridine and
    2,6-diaminopyridine, Russ. Chem. Bull., 52 (2003) 2117–2124. 
 
  -  K.J. Asali, M. El-Khateeb, L. Almazahreh, Kinetics and mechanism
    of ligand substitution reactions of (2,6-diaminopyridine)
	  [M(CO)2] (M = Cr, Mo, W), Transition Met. Chem., 40 (2015)
    471–475. 
 
  -  V.B. Rana, P. Singh, D.P. Singh, M.P. Teotia, Trivalent chromium,
    manganese, iron and cobalt chelates of a tetradentate N6
    macrocyclie ligand, Transition Met. Chem., 7 (1982) 174–177. 
 
  -  S. Ilhan, H. Temel, Synthesis and characterization of a new
    macrocyclic Schiff base derived from 2,6-diaminopyridine
    and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane and its
    Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes, Transition
    Met. Chem., 32 (2007) 1039–1046. 
 
  -  S. Ilhan, H. Temel, M. Sunkur, I. Teğin, Synthesis, structural
    characterization of new macrocyclic Schiff base derived from
    1,6-bis(2-formylphenyl)hexane and 2,6-diaminopyridine and
    its metal complexes, IJC-A, 47 (2008) 560–564. 
 
  -  F. Böhme, Ch. Kunert, H. Komber, D. Voigt, P. Friedel,
    M. Khodja, H. Wilde, Polymeric and macrocyclic ureas based
    on meta-substituted aromatic diamines, Macromolecules,
    35 (2002) 4233–4237. 
 
  -  Y.H. Zhai, Q. He, Q. Han, S. Duan, Solid-phase extraction of
    trace metal ions with magnetic nanoparticles modified with
    2,6-diaminopyridine, Microchim. Acta, 178 (2012) 405–412. 
 
  -  P. Cyganowski, D. Jermakowicz-Bartkowiak, P. Wilkowski,
    Odzyskiwanie metali szlachetnych na jonitach polimerowych,
    Chemik, 67 (2013) 317–324. 
 
  -  https://www.chemicalbook.com/ProductMSDSDetailCB02
    36195_EN.htm 
 
  -  K. Witt, E. Radzyminska-Lenarcik, A. Kosciuszko, M. Gierszewska,
    K. Ziuziakowski, The influence of the morphology
    and mechanical properties of polymer inclusion membranes
    (PIMs) on zinc ion separation from aqueous solutions, Polymers,
    10 (2018) 134–147. 
 
  -  S. Lis, B. Marciniak, M. Elbanowski, On the role of the ground
    state Tb(III)/acetylacetone complex in sensitized emission of
    Tb(III) in ethanol solution, Monatsh. Chem., 120 (1989) 821–826. 
 
  -  Z. Ren, L. Meng, Y. Dai, Extraction equilibria of copper(II) with
    D2EHPA in kerosene from aqueous solutions in acetate buffer
    media, J. Chem. Eng. Data, 52 (2007) 438–441. 
 
  -  A.N. Banza, E. Gock, K. Kongolo, Base metals recovery
    from copper smelter slag by oxidising leaching and solvent
    extraction, Hydrometallurgy, 67 (2020) 63–69. 
 
  -  E. Radzymińska-Lenarcik, K. Witt, Solvent extraction of copper
    ions by 3-substituted derivatives of β-diketones, Sep. Sci.
    Technol., 53 (2017) 1223–1229. 
 
  -  B. Pośpiech, W. Walkowiak, Separation of copper(II), cobalt(II)
    and nickel(II) from chloride solutions by polymer inclusion
    membranes, Sep. Purif. Technol., 57 (2007) 461–465. 
 
  -  A.L. Salgado, A.M.O. Veloso, D.D. Pereira, G.S. Gontijo,
    A. Salum, M.B. Mansur, Recovery of zinc and manganese
    from spent alkaline batteries by liquid–liquid extraction with
    Cyanex 272, J. Power Sources, 115 (2003) 367–373. 
 
  -  M. Regel-Rosocka, M. Wiśniewski, Selective removal of zinc(II)
    from spent pickling solutions in the presence of iron ions with
    phosphonium ionic liquid Cyphos IL 101, Hydrometallurgy,
    110 (2011) 85–90. 
 
  -  M. Daryabor, A. Ahmadi, H. Zilouei, Solvent extraction of
    cadmium and zinc from sulphate solutions: comparison of
    mechanical agitation and ultrasonic irradiation, Ultrason.
    Sonochem., 34 (2017) 931–937. 
 
  -  M. Ulewicz, E. Radzymińska-Lenarcik, Application of supported
    and polymer membrane with 1 decyl-2-methylimidazole for
    separation of transition metal ions, Physicochem. Probl. Miner.
    Process., 48 (20012) 91–102. 
 
  -  F. Sellami, O. Kebiche-Senhadji, S. Marais, N. Couvrat,
    K. Fatyeyeva, Polymer inclusion membranes based on CTA/PBAT blend containing Aliquat 336 as extractant for removal
    of Cr(VI): efficiency, stability and selectivity, React. Funct.
    Polym., 139 (2019) 120–132. 
 
  -  M. Baczyńska, M. Waszak, M. Nowicki, D. Prządka, S. Borysiak,
    M. Regel-Rosocka, Characterization of polymer inclusion
    membranes (PIMs) containing phosphonium ionic liquids
	  as Zn(II) carriers, Ind. Eng. Chem. Res., 57 (2018) 5070–5082.