1. Plastics - The Facts 2019, An Analysis of European Plastics Production, Demand and Waste Data, 2019. Available at: https://
  2. R.C. Thompson, C.J. Moore, F.S.V. Saal, S.H. Swan, Plastics, the environment and human health: current consensus and future trends, Philos. Trans. R. Soc. B. Biol. Sci., 364 (2009) 2153–2166.
  3. R.C. Thompson, Y. Olsen, R.P. Mitchell, A. Davis, S.J. Rowland, A.W.G. John, D. McGonigle, A.E. Russell, Lost at sea: where is all the plastic?, Science, 304 (2004) 838–845.
  4. T. Poerio, E. Piacentini, R. Mazzei, Membrane processes for microplastic removal, Molecules, 24 (2019) 4148, doi: 10.3390/ molecules24224148.
  5. J. Talvitie, A. Mikola, O. Setälä, M. Heinonen, A. Koistinen, How well is microlitter purified from wastewater? – A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant, Water Res., 109 (2017) 164–172.
  6. M. Lares, M.C. Ncibi, M. Sillanpää, M. Sillanpää, Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology, Water Res., 133 (2018) 236–246.
  7. P. Liu, L. Qian, H. Wang, X. Zhan, K. Lu, C. Gu, S. Gao, New insights into the aging behavior of microplastics accelerated by advanced oxidation processes, Environ. Sci. Technol., 53 (2019) 3579–3588.
  8. J.P. Da Costa, A.R. Nunes, P.S.M. Santos, A.V. Girão, A.C. Duarte, T. Rocha-Santos, Degradation of polyethylene microplastics in seawater: insights into the environmental degradation of polymers, J. Environ. Sci. Health., Part A, 53 (2018) 866–875.
  9. V.M. Pathak, Navneet, Review on the current status of polymer degradation: a microbial approach, Bioresour. Bioprocess., 4 (2017) 15, doi: 10.1186/s40643-017-0145-9.
  10. T.S. Tofa, K.L. Kunjali, S. Paul, J. Dutta, Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods, Environ. Chem. Lett., 17 (2019) 1341–1346.
  11. G. Wang, L. Zhang, Y. Li, W. Zhao, A. Kuang, Y. Li, L. Xia, Y. Li, S. Xiao, Biaxial strain tunable photocatalytic properties of 2D ZnO/GeC heterostructure, J. Phys. D: Appl. Phys., 53 (2020) 1:015104, doi: 10.1088/1361-6463/ab440e.
  12. M.C. Ariza-Tarazona, J.F. Villarreal-Chiu, V. Barbieri, C. Siligardi, E.I. Cedillo-González, New strategy for microplastic degradation: green photocatalysis using a protein-based porous N-TiO2 semiconductor, Ceram. Int., 45 (2019) 9618–9624.
  13. W. Perren, A. Wojtasik, Q. Cai, Removal of microbeads from wastewater using electrocoagulation, ACS Omega, 3 (2018) 3357–3364.
  14. B. Ma, W. Xue, Y. Ding, C. Hu, H. Liu, J. Qu, Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment, J. Environ. Sci., 78 (2019) 267–275.
  15. B. Ma, W. Xue, C. Hu, H. Liu, J. Qu, L. Li, Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment, Chem. Eng. J., 359 (2019) 159–167.
  16. M. Enfrin, L.F. Dumée, J. Lee, Nano/microplastics in water and wastewater treatment processes – origin, impact and potential solutions, Water Res., 161 (2019) 621–638.
  17. J. Ma, Z. Wang, Y. Xu, Q. Wang, Z. Wu, A. Grasmick, Organic matter recovery from municipal wastewater by using dynamic membrane separation process, Chem. Eng. J., 219 (2013) 190–199.
  18. S. Ziajahromi, P.A. Neale, L. Rintoul, F.D.L. Leusch, Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics, Water Res., 112 (2017) 93–99.
  19. L. Li, D. Liu, K. Song, Y. Zhou, Performance evaluation of MBR in treating microplastics polyvinylchloride contaminated polluted surface water, Mar. Pollut. Bull., 150 (2020) 1–6.
  20. M. Enfrin, J. Lee, P. Le-Clech, L.F. Dumée, Kinetic and mechanistic aspects of ultrafiltration membrane fouling by nano- and microplastics, J. Membr. Sci., 601 (2020) 117890, doi: 10.1016/j.memsci.2020.117890.
  21. B. Fryczkowska, A. Machnicka, D. Biniaś, C. Ślusarczyk, J. Fabia, The influence of graphene addition on the properties of composite rGO/PAN membranes and their potential application for water disinfection, Membranes, 10 (2020) 58, doi: 10.3390/membranes10040058.
  22. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339–1339.
  23. P. Pradyot, Handbook of Inorganic Chemicals, McGraw-Hill, New York, NY, 2003, p. 430.
  24. R.T. Bray, K. Fitobór, Sizes of iron hydroxide particles formed during ferric coagulation processes, Desal. Water Treat., 64 (2017) 419–424.
  25. R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects, ACS Nano, 11 (2017) 5293–5308.