References

  1. M.Y. Li, Q.G. Zhang, X.J. Sun, K. Karki, C. Zeng, A. Pandey, B. Rawat, F. Zhang, Heavy metals in surface sediments in the trans-Himalayan Koshi River catchment: distribution, source identification and pollution assessment, Chemosphere, 244 (2020) 125410, https://doi.org/10.1016/j. chemosphere.2019.125410.
  2. C. Tejada-Tovar, Á. Villabona-Ortiz, L. Garcés-Jaraba, Adsorción de metales pesados en aguas residuales usando materiales de origen biológico, TecnoLógicas, 18 (2017) 109–123.
  3. Q. Mahmood, M. Asif, S. Shaheen, M.T. Hayat, S. Ali, Chapter 6 – Cadmium Contamination in Water and Soil, M. Hasanuzzaman, M.N. Vara Prasad, M. Fujita, Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation, Academic Press, 2019, pp. 141–161.
  4. L.F. Londoño-franco, P.T. Londoño-muñoz, F.G. Muñoz-garcía, Risk of heavy metals in human and animal health, Biotecnología en el Sector Agropecuario y Agroindustrial, 14 (2016) 145–153.
  5. M. Yazdi, M. Kolahi, E.M. Kazemi, A.G. Barnaby, Study of the contamination rate and change in growth features of lettuce (Lactuca sativa Linn.) in response to cadmium and a survey of its phytochelatin synthase gene, Ecotoxicol. Environ. Saf., 180 (2019) 295–308.
  6. P.B. Vilela, C.A. Matias, A. Dalalibera, V.A. Becegato, A.T. Paulinoab, Polyacrylic acid-based and chitosan-based hydrogels for adsorption of cadmium: equilibrium isotherm, kinetic and thermodynamic studies, J. Environ. Chem. Eng., 7 (2019) 103327, https://doi.org/10.1016/j.jece.2019.103327.
  7. E.M. Terrazas, G.A. Pérez, R.A. Tapia, M.A. Saavedra, S.A. Limachi, G.G. Camacho, Determinación interactiva de metales totales en las aguas de la bahía interior del Lago Titicaca-Puno Perú, Revista de Investigaciones Altoandinas, 9 (2017) 125–134.
  8. R.F. Quispe Yana, G.B. Quispe, H.N. Chui Betancur, S.H. Cáceres, A.P. Calatayud Mendoza, P.S. Yábar Miranda, Concentration of heavy metals: chrome, cadmium and lead in surface sediments in the river Coata, Peru, Rev. Boliv. Quim., 36 (2019) 83–90.
  9. L.Y. Luo, L.L. Xie, D.C. Jin, B.B. Mi, D.H. Wang, X.F. Li, X.Z. Dai, X.X. Zou, Z. Zhang, Y.Q. Ma, F. Liu, Bacterial community response to cadmium contamination of agricultural paddy soil, Appl. Soil Ecol., 139 (2019) 100–106.
  10. USEPA, Cadmium: Fact Sheet on a Drinking Water Metal, United States Environmental Protection Agency, 2007, pp. 1–2.
  11. WHO, Cadmium in Drinking Water, WHO Guidelines for Drinking-Water Quality, World Health Organization, 2011, pp. 1–16.
  12. Ministerio del Ambiente, Decreto supremo No 004-2017- MINAM, Estándares de calidad ambiental (ECA) para agua, Perú, 2017, pp. 6–9.
  13. C. Femina Carolin, P. Senthil Kumar, A. Saravanan, G. Janet Joshiba, Mu. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review, Biochem. Pharmacol., 5 (2017) 2782–2799.
  14. M. Basu, A.K. Guha, L. Ray, Adsorption of lead on cucumber peel, J. Cleaner Prod., 151 (2017) 603–615.
  15. Z.H. Khan, M.L. Gao, W.W. Qiu, M.S. Islam, Z.G. Song, Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution, Chemosphere, 246 (2020) 125701, https://doi.org/10.1016/j.chemosphere.2019.125701.
  16. S.X. Duan,L.S. Wu, J.X. Li, Y.S. Huang, X.L. Tan, T. Wen, T. Hayat, A. Alsaedi, X.K. Wang, Two-dimensional copperbased metal−organic frameworks nano-sheets composites: one-step synthesis and highly efficient U(VI) immobilization, J. Hazard. Mater., 373 (2019) 580–590.
  17. M. Iqbal, N. Iqbal, I.A. Bhatti, N. Ahmad, M. Zahid, Response surface methodology application in optimization of cadmium adsorption by shoe waste: a good option of waste mitigation by waste, Ecol. Eng., 88 (2016) 265–275.
  18. P. Pal, A. Pal, Surfactant-modified chitosan beads for cadmium ion adsorption, Int. J. Biol. Macromol., 104 (2017) 1548–1555.
  19. N.C. Joshi, V. Rangar, R. Sati, E. Joshi, A. Singh, Adsorption behavior of waste leaves of Quercus leucotrichophora for the removal of Ni2+ and Cd2+ ions from waste water, Orient. J. Chem., 35 (2019) 591–596.
  20. A.G. Adeniyi, J.O. Ighalo, Biosorption of pollutants by plant leaves: an empirical review, J. Environ. Chem. Eng., 7 (2019) 103100, https://doi.org/10.1016/j.jece.2019.103100.
  21. K. Pyrzynska, Removal of cadmium from wastewaters with low-cost adsorbents, J. Environ. Chem. Eng., 7 (2018) 102795, https://doi.org/10.1016/j.jece.2018.11.040.
  22. C.M. Park, J.H. Han, K.H. Chu, Y.A.J. Al-Hamadani, N. Her, J.Y. Heo, Y.M. Yoon, Influence of solution pH, ionic strength, and humic acid on cadmium adsorption onto activated biochar: experiment and modeling, J. Ind. Eng. Chem., 48 (2016) 186–193.
  23. J. Lara, C. Tejada, Á. Villabona, A. Arrieta, C.G. Conde, Adsorción de plomo y cadmio en sistema continuo de lecho fijo sobre residuos de cacao, Revista ION, 29 (2016) 113–124.
  24. P. Chand, A.K. Shil, M. Sharma, Y.B. Pakade, Improved adsorption of cadmium ions from aqueous solution using chemically modified apple pomace: mechanism, kinetics, and thermodynamics, Int. Biodeterior. Biodegrad., 90 (2014) 8–16.
  25. A.M. Farhan, A.H. Al-Dujaili, A.M. Awwad, Equilibrium and kinetic studies of cadmium(II) and lead(II) ions biosorption onto Ficus carcia leaves, Int. J. Ind. Chem., 3 (2013)1–8.
  26. R. Asamoah, G. Ofori-Sarpong, R.K. Amankwah, Biosorption of heavy metals from wastewater using Bambusa vulgaris (bamboo), 2nd UMaT Biennial International Mining and Mineral Conference, University of Mines and Technology, Tarkwa, Ghana, 2 (2012) 56–61.
  27. T. Chi, J. Zuo, F.L. Liu, Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar, Front. Environ. Sci. Eng., 11 (2017) 15, https:// doi.org/10.1007/s11783-017-0921-y.
  28. N. Priyantha, L.B.L. Lim, D.T.B. Tennakoon, N.H.M. Mansor, Breadfruit (Artocarpus altilis) waste for bioremediation of Cu(II) and Cd(II) ions from aqueous medium, Ceylon J. Sci. (Phys. Sci.), 17 (2013) 19–29.
  29. N. Priyantha, L.B.L. Lim, N.H.M. Mansor, A.B. Liyandeniya, Irreversible sorption of Pb(II) from aqueous solution on breadfruit peel to mitigate environmental pollution problems, Water Sci. Technol., 80 (2014) 2241–2249.
  30. L.B.L. Lim, N. Priyantha, Y.C. Lu, N.A.H. Mohamad Zaidi, Adsorption of heavy metal lead using Citrus grandis (Pomelo) leaves as low-cost adsorbent, Desal. Water Treat., 166 (2019) 44–52.
  31. M. Basu, A.K. Guha, L. Ray, Adsorption behavior of cadmium on husk of lentil, Process Saf. Environ. Prot., 106 (2017) 11–22.
  32. N. Priyantha, L.B.L. Lim, S. Mallikarathna, T.P.K. Kulasooriya, Enhanced removal of Ni(II) by acetic acid-modified peat, Desal. Water Treat., 137 (2019) 162–173.
  33. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Removal of cadmium(II) from aqueous solutions by adsorption using meranti wood, Wood Sci. Technol., 46 (2012) 221–241.
  34. N.A.H.M. Zaidi, L.B.L. Lim, A. Usman, Enhancing adsorption of Pb(II) from aqueous solution by NaOH and EDTA modified Artocarpus odoratissimus leaves, J. Environ. Chem. Eng., 6 (2018) 7172–7184.
  35. S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review, Sustainable Mater. Technol., 9 (2016) 10–40.
  36. E. Gonzales Mora, Aprovechamiento, transformación y usos del bambú, BAMBUCYT, 2nd ed., Lima, 2018.
  37. O. Sahu, N. Singh, In the Impact and Prospects of Green Chemistry for Textile Technology, Woodhead Publishing, 2019, pp. 367–416.
  38. L. Semerjian, Removal of heavy metals (Cu, Pb) from aqueous solutions using pine (Pinus halepensis) sawdust: equilibrium, kinetic, and thermodynamic studies, Environ. Technol. Innovation, 12 (2018) 91–103.
  39. X.M. Huang, T.H. Chen, X.H. Zou, M.L. Zhu, D. Chen, M. Pan, The adsorption of Cd(II) on manganese oxide investigated by batch and modeling techniques, Int. J. Environ. Res. Public Health, 14 (2017) 1145, doi: 10.3390/ijerph14101145.
  40. M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard. Mater., 20 (2020) 122–383.
  41. C. Tejada-Tovar, A. Herrera-Barros, A. Villabona-Ortíz, Assessment of chemically modified lignocellulose waste for the adsorption of Cr(VI), Revista Facultad de Ingeniería, 29 (2020) e10298.
  42. M. Villen-Guzman, D. Gutierrez-Pinilla, C. Gomez-Lahoz, C. Vereda-Alonso, J.M. Rodriguez-Maroto, B. Arhoun, Optimization of Ni(II) biosorption from aqueous solution on modified lemon peel, Environ. Res., 19 (2019) 108849, https:// doi.org/10.1016/j.envres.2019.108849.
  43. F. Tomul, Y. Arslan, B. Kabak, D. Trak, E. Kendüzler, E.C. Lima, H.N. Trande, Peanut shells-derived biochars prepared from different carbonization processes: comparison of characterization and mechanism of naproxen adsorption in water, Sci. Total Environ., 20 (2020) 137828, https://doi. org/10.1016/j.scitotenv.2020.137828.
  44. E. Asuquo, A. Martin, P. Nzerem, F. Siperstein, X.L. Fan, Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: equilibrium, kinetics and characterisation studies, J. Environ. Chem. Eng., 5 (2017) 679–698.
  45. J.-H. Park, J.J. Wang, S.-H. Kim, S.-W. Kang, C.Y. Jeong, J.-R. Jeon, K.H. Park, J.-S. Cho, R.D. Delaune, D.-C. Seo, Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures, J. Colloid Interface Sci., 553 (2019) 298–307.
  46. C. Tejada-Tovar, A.D. Gonzalez-Delgado, A. Villabona-Ortiz, Characterization of residual biomasses and its application for the removal of lead ions from aqueous solution, Appl. Sci., 9 (2019) 4486, https://doi.org/10.3390/app9214486.
  47. X. Zhang, L.G. Yan, J. Li, H.Q. Yu, Adsorption of heavy metals by L-cysteine intercalated layered double hydroxide: kinetic, isothermal and mechanistic studies, J. Colloid Interface Sci., 562 (2020) 149–158.
  48. S. Ayub, A.A. Mohammadi, M. Yousefi, F. Changani, Performance evaluation of agro-based adsorbents for the removal of cadmium from wastewater, Desal. Water Treat., 142 (2019) 293–299.
  49. X.J. Hu, X.B. Zhang, H.H. Ngo, W.S. Guo, H.T. Wen, C.C. Li, Y.C. Zhang, C.J. Ma, Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel, Sci. Total Environ., 707 (2020) 135544, https://doi. org/10.1016/j.scitotenv.2019.135544.
  50. H.D. Sun, N.N. Xia, Z.M. Liu, F.G. Kong, S. Wang, Removal of copper and cadmium ions from alkaline solutions using chitosan-tannin functional paper materials as adsorbent, Chemosphere, 236 (2019) 124370, https://doi.org/10.1016/j. chemosphere.2019.124370.
  51. A. Takdastan, S. Samarbaf, Y. Tahmasebi, N. Alavi, A.A. Babaei, Alkali modified oak waste residues as a cost-effective adsorbent for enhanced removal of cadmium from water: Isotherm, kinetic, thermodynamic and artificial neural network modeling, J. Ind. Eng. Chem., 78 (2019) 352–363.
  52. L.B.L. Lim, N. Priyantha, D.T.B. Tennakoon, M.K. Dahri, Biosorption of cadmium(II) and copper(II) ions from aqueous solution by core of Artocarpus odoratissimus, Environ. Sci. Pollut. Res., 19 (2012) 3250–3256.
  53. C. Tejada-Tovar, A. Villabona-Ortíz, L. Acevedo-Castilla, E. López-Murillo, D. Acevedo, Study of the effect of temperature in the remotion of Ni(II) on African Palm Bagasse (Elaeis guineensis), Int. J. ChemTech Res., 11 (2018) 32–44.
  54. J. Núñez-Zarur, C. Tejada-Tovar, A. Villabona-Ortíz, D. Acevedo, R. Tejada-Tovar, Thermodynamics, kinetics and equilibrium adsorption of Cr(VI) and Hg(II) in aqueous solution on corn husk (Zea Mays), Int. J. ChemTech Res., 11 (2018) 265–280.
  55. G.Y. Chen, C.B. Wang, J.N. Tian, J.P. Liu, Q.J. Ma, B. Liu, X.P. Li, Investigation on cadmium ions removal from water by different raw materials-derived biochars, J. Water Process Eng., 35 (2020) 101223, https://doi.org/10.1016/j.jwpe.2020.101223.
  56. H.J. Dai, Y. Huang, H. Zhang, L. Ma, H.H. Huang, J.H. Wu, Y.H. Zhang, Direct fabrication of hierarchically processed pineapple peel hydrogels for efficient Congo red adsorption, Carbohydr. Polym., 19 (2019) 115599, https://doi.org/10.1016/j. carbpol.2019.115599.
  57. F. Ebrahimi, A. Sadeghizadeh, F. Neysan, M. Heydari, Fabrication of nanofibers using sodium alginate and poly(vinyl alcohol) for the removal of Cd2+ ions from aqueous solutions: adsorption mechanism, kinetics and thermodynamics, Heliyon, 5 (2019) e02941, https://doi.org/10.1016/j.heliyon.2019.e02941.
  58. N. Jiang, M. Erdős, O.A. Moultos, R. Shang, T.J.H. Vlugt, S.G.J. Heijman, L.C. Rietveld, The adsorption mechanisms of organic micropollutants on high-silica zeolites causing S-shaped adsorption isotherms: an experimental and Monte Carlo simulation study, Chem. Eng. J., 389 (2019) 123968, https:// doi.org/10.1016/j.cej.2019.123968.
  59. F.D. Sandoval-Ibarra, J.L. López-Cervantes, J. Gracia-Fadrique, Ecuación de Langmuir en líquidos simples y tensoactivos, Educ. Química, 26 (2015) 307–313.
  60. S.P. Verma, B. Sarkar, Simultaneous removal of Cd(II) and p-cresol from wastewater by micellar-enhanced ultrafiltration using rhamnolipid: Flux decline, adsorption kinetics and isotherm studies, J. Environ. Manage., 213 (2018) 217–235.
  61. A. Maleki, A.H. Mahvi, M.A. Zazouli, H. Izanloo, A.H. Barati, Aqueous cadmium removal by adsorption on barley hull and barley hull ash, Asian J. Chem., 23 (2011) 1373–1376.
  62. A. Maleki, E. Pajootan, B. Hayati, Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: equilibrium, kinetic and thermodynamic studies, J. Taiwan Inst. Chem. Eng., 51 (2015) 127–134.
  63. M.H. Deng, X. Yang, X. Dai, Q. Zhang, A. Malik, A. Sadeghpour, Heavy metal pollution risk assessments and their transportation in sediment and overlay water for the typical Chinese reservoirs, Ecol. Indic., 112 (2020) 106–166.
  64. Y.H. Zhang, Y.C. Wang, H.H. Zhang, Y. Li, Z.B. Zhang, W. Zhang, Recycling spent lithium-ion battery as adsorbents to remove aqueous heavy metals: adsorption kinetics, isotherms, and regeneration assessment, Resour. Conserv. Recycl., 156 (2020) 104688, https://doi.org/10.1016/j.resconrec.2020.104688.