1. I. Oller, S. Malato, J. Sánchez-Pérez, Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review, Sci. Total Environ., 409 (2011) 4141–4166.
  2. K. Paździor, L. Bilińska, S. Ledakowicz, A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment, Chem Eng. J., 376 (2019) 120597, doi: 10.1016/j.cej.2018.12.057.
  3. S. Vilhunen, M. Sillanpää, Recent developments in photochemical and chemical AOPs in water treatment: a mini-review, Rev. Environ. Sci. Biotechnol., 9 (2010) 323–330.
  4. A.D. Bokare, W. Choi, Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes, J. Hazard. Mater., 275 (2014) 121–135.
  5. A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes–a review, Chemosphere, 174 (2017) 665–688.
  6. R. Gonzalez-Olmos, M.J. Martin, A. Georgi, F.-D. Kopinke, I. Oller, S. Malato, Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH, Appl. Catal., B, 125 (2012) 51–58.
  7. C.-J. Tang, P. Zheng, T.-T. Chen, J.-Q. Zhang, Q. Mahmood, S. Ding, X.-G. Chen, J.-W. Chen, D.-T. Wu, Enhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMMOX process, Water Res., 45 (2011) 201–210.
  8. L.K. Wang, Y.-T. Hung, H.H. Lo, C. Yapijakis, Waste Treatment in the Food Processing Industry, CRC Press, US, 2005.
  9. L. Hasenclever, J. Paranhos, The Development of the Pharmaceutical Industry in Brazil and India: Technological Capability and Industrial Development, Economics Innovation Research Group, Economics Institute, Federal University of Rio de Janeiro, 2009 (Unpublished manuscript).
  10. J. Corcoran, M.J. Winter, C.R. Tyler, Pharmaceuticals in the aquatic environment: a critical review of the evidence for health effects in fish, Crit. Rev. Toxicol., 40 (2010) 287–304.
  11. C.G. Daughton, T.A. Ternes, Pharmaceuticals and personal care products in the environment: agents of subtle change?, Environ. Health Perspect., 107 (1999) 907–938.
  12. C. Deb, B. Thawani, S. Menon, V. Gore, V. Chellappan, S. Ranjan, M. Ganesapillai, Design and analysis for the removal of active pharmaceutical residues from synthetic wastewater stream, Environ. Sci. Pollut. Res., 26 (2019) 18739–18751.
  13. A. Ikhlaq, H.M.S. Munir, A. Khan, F. Javed, K.S. Joya, Comparative study of catalytic ozonation and Fenton-like processes using iron-loaded rice husk ash as catalyst for the removal of methylene blue in wastewater, Ozone Sci. Eng., 41 (2018) 250–260.
  14. L. Zhou, J. Ma, H. Zhang, Y. Shao, Y. Li, Fabrication of magnetic carbon composites from peanut shells and its application as a heterogeneous Fenton catalyst in removal of methylene blue, Appl. Surf. Sci., 324 (2015) 490–498.
  15. J.-H. Park, J.J. Wang, R. Xiao, N. Tafti, R.D. DeLaune, D.-C. Seo, Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst, Bioresour. Technol., 249 (2018) 368–376.
  16. S.M.H. Asl, A. Ghadi, M.S. Baei, H. Javadian, M. Maghsudi, H. Kazemian, Porous catalysts fabricated from coal fly ash as cost-effective alternatives for industrial applications: a review, Fuel, 217 (2018) 320–342.
  17. N. Wang, X. Sun, Q. Zhao, Y. Yang, P. Wang, Leachability and adverse effects of coal fly ash: a review, J. Hazard. Mater., 396 (2020) 122725, doi: 10.1016/j.jhazmat.2020.122725.
  18. A. Zhang, N. Wang, J. Zhou, P. Jiang, G. Liu, Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash, J. Hazard. Mater., 201 (2012) 68–73.
  19. N. Wang, J. Chen, Q. Zhao, H. Xu, Study on preparation conditions of coal fly ash catalyst and catalytic mechanism in a heterogeneous Fenton-like process, RSC Adv., 7 (2017) 52524–52532.
  20. N. Wang, Q. Hu, L. Hao, Q. Zhao, Degradation of Acid Organic 7 by modified coal fly ash-catalyzed Fenton-like process: kinetics and mechanism study, Int. J. Environ. Sci. Technol., 16 (2019) 89–100.
  21. F. Mushtaq, M. Zahid, I.A. Bhatti, S. Nasir, T. Hussain, Possible applications of coal fly ash in wastewater treatment, J. Environ. Manage., 240 (2019) 27–46.
  22. G.P. Glasby, H.D. Schulz, Eh Ph diagrams for Mn, Fe, Co, Ni, Cu and as under seawater conditions: application of two new types of eh ph diagrams to the study of specific problems in marine geochemistry, Aquat. Geochem., 5 (1999) 227–248.
  23. J.H. Ramirez, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, C. Moreno-Castilla, C.A. Costa, L.M. Madeira, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, Appl. Catal., B, 75 (2007) 312–323.
  24. L. Xu, J. Wang, A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol, J. Hazard. Mater., 186 (2011) 256–264.
  25. T. Preocanin, N. Kallay, Point of zero charge and surface charge density of TiO2 in aqueous electrolyte solution as obtained by potentiometric mass titration, Croat. Chem. Acta, 79 (2006) 95–106.
  26. D.G. Grubb, M.a.S. Guimaraes, R. Valencia, Phosphate immobilization using an acidic type F fly ash, J. Hazard. Mater., 76 (2000) 217–236.
  27. A. Ikhlaq, D.R. Brown, B. Kasprzyk-Hordern, Mechanisms of catalytic ozonation on alumina and zeolites in water: formation of hydroxyl radicals, Appl. Catal., B, 123 (2012) 94–106.
  28. S.K. Chaudhuri, B. Sur, Oxidative decolorization of reactive dye solution using fly ash as catalyst, J. Environ. Eng., 126 (2000) 583–594.
  29. R. Feng, K. Chen, X. Yan, X. Hu, Y. Zhang, J. Wu, Synthesis of ZSM-5 zeolite using coal fly ash as an additive for the methanol to propylene (MTP) reaction, Catalysts, 9 (2019) 788, doi: 10.3390/catal9100788.
  30. N.K. Daud, B.H. Hameed, Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst, J. Hazard. Mater., 176 (2010) 938–944.
  31. R.G.P. Nidheesh, S. Ramesh, Degradation of dyes from aqueous solution by Fenton processes: a review, Environ. Sci. Pollut. Res., 20 (2013) 2099–2132.
  32. M. Canals, R. Gonzalez-Olmos, M. Costas, A. Company, Robust iron coordination complexes with N-based neutral ligands as efficient Fenton-like catalysts at neutral pH, Environ. Sci. Technol., 47 (2013) 9918–9927.
  33. M.L. Rache, A.R. García, H.R. Zea, A.M. Silva, L.M. Madeira, J.H. Ramírez, Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst— kinetics with a model based on the Fermi’s equation, Appl. Catal., B, 146 (2014) 192–200.
  34. M. Neamtu, A. Yediler, I. Siminiceanu, A. Kettrup, Oxidation of commercial reactive azo dye aqueous solutions by the photo- Fenton and Fenton-like processes, J. Photochem. Photobiol., A, 161 (2003) 87–93.
  35. J. De Laat, T.G. Le, Effects of chloride ions on the iron(III)- catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process, Appl. Catal., B, 66 (2006) 137–146.
  36. X. Xue, K. Hanna, N. Deng, Fenton-like oxidation of Rhodamine B in the presence of two types of iron(II, III) oxide, J. Hazard. Mater., 166 (2009) 407–414.
  37. L.G. Devi, C. Munikrishnappa, B. Nagaraj, K.E. Rajashekhar, Effect of chloride and sulfate ions on the advanced photo Fenton and modified photo Fenton degradation process of Alizarin Red S, J. Mol. Catal. A: Chem., 374 (2013) 125–131.