1. Y. Bichsel, U. von Gunten, Formation of iodo-trihalomethanes during disinfection and oxidation of iodide-containing waters, Environ. Sci. Technol., 34 (2000) 2784–2791.
  2. Y. Bichsel, U. von Gunten, Oxidation of iodide and hypoiodous acid in the disinfection of natural waters, Environ. Sci. Technol., 33 (1999) 4040–4045.
  3. S.W. Krasner, H.S. Weinberg, S.D. Richardson, S.J. Pastor, R. Chinn, M.J. Sclimenti, G.D. Onstad, A.D. Thruston, Occurrence of a new generation of disinfection byproducts, Environ. Sci. Technol., 40 (2006) 7175–7185.
  4. G. Hua, D.A. Reckhow, Comparison of disinfection byproduct formation from chlorine and alternative disinfectants, Water Res., 41 (2007) 1667–1678.
  5. S.D. Richardson, Environmental mass spectrometry: emerging contaminants and current issues, Anal. Chem., 80 (2008) 4373–4402.
  6. S.D. Richardson, F. Fasano, J.J. Ellington, F.G. Crumley, K.M. Buettner, J.J. Evans, B.C. Blount, L.K. Silva, T.J. Waite, G.W. Luther, A.B. McKague, R.J. Miltner, E.D. Wagner, M.J. Plewa, Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water, Environ. Sci. Technol., 42 (2008) 8330–8338.
  7. D.B. Jones, A. Saglam, A. Triger, H. Song, T. Karanfil, I-THM formation and speciation: preformed monochloramine versus prechlorination followed by ammonia addition, Environ. Sci. Technol., 45 (2011) 10429–10437.
  8. S.D. Richardson, New disinfection by-product issues: emerging DBPs and alternative routes of exposure, Global NEST J., 7 (2005) 43–60.
  9. B. Cancho, F. Ventura, M. Galceran, A. Diaz, S. Ricart, Determination, synthesis and survey of iodinated trihalomethanes in water treatment processes, Water Res., 13 (2000) 3380–3390.
  10. T.Y. Zhang, B. Xu, C.Y. Hu, Y.L. Lin, L. Lin, T. Ye, F.X. Tian, A comparison of iodinated trihalomethane formation from chlorine, chlorine dioxide and potassium permanganate oxidation processes, Water Res., 14 (2014) 0043–1354.
  11. C.E. Jones, L.J. Carpenter, Solar photolysis of CH2I2, CH2ICl, and CH2IBr in water, saltwater, and seawater, and seawater, Environ. Sci. Technol., 39 (2005) 6130–6137.
  12. J. Criquet, S. Allard, E. Salhi, C.A. Joll, A. Heitz, U. von Gunten, Iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters: role of bromide, Environ. Sci. Technol., 46 (2012) 7350–7357.
  13. S. Allard, J.W.A. Charrois, C.A. Joll, A. Heitz, Simultaneous analysis of 10 trihalomethanes at nanogram per liter levels in water using solid-phase microextraction and gas chromatography mass-spectrometry, J. Chromatogr. A, 1238 (2012) 15–21.
  14. M.J. Farré, K. Doederer, W. Gernjak, Y. Poussade, H. Weinberg, Disinfection by-products management in high quality recycled water, Water Sci. Technol. Water Supply, 12 (2012) 573–579.
  15. K.M.S. Hansen, R. Zortea, A. Piketty, S.R. Vega, H.R. Andersen, Photolytic removal of DBPs by medium pressure UV in swimming pool water, Sci. Total Environ., 443 (2013) 850–856.
  16. Y. Xiao, R. Fan, L. Zhang, J. Yue, R.D. Webster, T. Lim, Photodegradation of iodinated trihalomethanes in aqueous solution by UV 254 irradiation, Water Res., 49 (2014) 275–285.
  17. Y. Xiao, L. Zhang, J. Yue, R.D. Webster, T. Lim, Kinetic modeling and energy efficiency of UV/H2O2 treatment of iodinated trihalomethanes, Water Res., 75 (2015) 259–269.
  18. T.C. Wang, C.K. Tan, M.C. Liou, Degradation of bromoform and chlorodibromomethane in a catalyzed H2-water system, Bull. Environ. Contam. Toxicol., 41 (1988) 563–568.
  19. C.S. Criddle, P.L. McCarty, Electrolytic model system for reductive dehalogenation in aqueous environments, Environ. Sci. Technol., 25 (1991) 973–978.
  20. L.J. Matheson, P.G. Tratnyek, Reductive dehalogenation of chlorinated methanes by iron metal, Environ. Sci. Technol., 28 (1994) 2045–2053.
  21. N.M. Marković, C.A. Lucas, H.A. Gasteiger, P.N. Ross, Bromide adsorption on Pt(100): rotating ring-Pt(100) disk electrode and surface X-ray scattering measurements, Surf. Sci., 365 (1996) 229–240.
  22. N. Sonoyama, T. Sakata, Electrochemical continuous decomposition of chloroform and other volatile chlorinated hydrocarbons in water using a column type metal impregnated carbon fiber electrode, Environ. Sci. Technol., 33 (1999) 3438–3442.
  23. G.V. Korshin, M.D. Jensen, Electrochemical reduction of haloacetic acids and exploration of their removal by electrochemical treatment, Electrochim. Acta, 47 (2001) 747–751.
  24. D.E. Kimbrough, I.H. Suffet, Electrochemical removal of bromide and reduction of THM formation potential in drinking water, Water Res., 36 (2002) 4902–4906.
  25. N. Sonoyama, S. Seike, T. Sueoka, T. Sakata, Electrochemical decomposition of ppb level trihalomethane in tap water, J. Appl. Electrochem., 33 (2003) 1049–1055.
  26. J. Ghilane, M. Delamar, M. Guilloux-Viry, C. Lagrost, C. Mangeney, and P. Hapiot, Indirect reduction of aryldiazonium salts onto cathodically activated platinum surfaces: formation of metal-organic structures, Langmuir, 21 (2005) 6422–6429.
  27. X. Li, D. Heryadi, A.A. Gewirth, Electroreduction activity of hydrogen peroxide on Pt and Au electrodes, Langmuir, 21 (2005) 9251–9259.
  28. V.N. Trang, N.P. Dan, L.D. Phuong, B.X. Thanh, Pilot study on the removal of TOC, THMs, and HAAs in drinking water using ozone/UV-BAC, Desal. Water Treat., 52 (2014) 990–998.
  29. S. Tang, X. Wang, H. Yang, Y.F. Xie, Haloacetic acid removal by sequential zero-valent iron reduction and biologically active carbon degradation, Chemosphere, 90 (2013) 1563–1567.
  30. J. Radjenović, M.J. Farré, Y. Mu, W. Gernjak, J. Keller, Reductive electrochemical remediation of emerging and regulated disinfection byproducts, Water Res., 46 (2012) 1705–1714.
  31. L. Altamar, L. Fernández, C. Borras, J. Mostany, H. Carrero, B. Scharifker, Electroreduction of chloroacetic acids (mono-, di- and tri-) at polyNi(II)-tetrasulfonated phthalocyanine gold modified electrode, Sens. Actuators, B, 146 (2010) 103–110.
  32. A. Li, X. Zhao, Y. Hou, H. Liu, L. Wu, J. Qu, The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode, Appl. Catal., B, 111–112 (2012) 628–635.
  33. X. Zhao, A. Li, R. Mao, H. Liu, J. Qu, Electrochemical removal of haloacetic acids in a three-dimensional electrochemical reactor with Pd-GAC particles as fixed filler and Pd-modified carbon paper as cathode, Water Res., 51 (2014) 134–143.
  34. T. Li, J. Farrell, Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes, Environ. Sci. Technol., 34 (2000) 173–179.
  35. X. Wang, P. Ning, H. Liu, J. Ma, Dechlorination of chloroacetic acids by Pd/Fe nanoparticles: effect of drying method on metallic activity and the parameter optimization, Appl. Catal., B, 94 (2010) 55–63.
  36. S. Yuan, M. Tian, X. Lu, Electrokinetic movement of hexachlorobenzene in clayed soils enhanced by Tween 80 and β-cyclodextrin, J. Hazard. Mater., 137 (2006) 1218–1225.
  37. S. Yuan, X. Mao, and A.N. Alshawabkeh, Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: a shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions, Environ. Sci. Technol., 46 (2012) 3398–3405.
  38. P.M.L. Bonin, P. Edwards, D. Bejan, C.C. Lo, N.J. Bunce, A.D. Konstantinov, Catalytic and electrocatalytic hydrogenolysis of brominated diphenyl ethers, Chemosphere, 58 (2005) 961–967.
  39. B.P. Chaplin, M. Reinhard, W.F. Schneider, C. Schüth, J.R. Shapley, T.J. Strathmann, C.J. Werth, Response to comment on “critical review of Pd-based catalytic treatment of priority contaminants in water”, Environ. Sci. Technol., 46 (2012) 11469–11470.
  40. X. Wang, Q. Wu, H. Ma, C. Ma, Z. Yu, Y. Fu, X. Dong, Fabrication of PbO2 tipped Co3O4 nanowires for efficient photoelectrochemical decolorization of dye (reactive brilliant blue KN-R) wastewater, Sol. Energy Mater. Sol. Cells, 191 (2019) 381–388.
  41. Q. Shen, Z. Chen, X. Huang, M. Liu, G. Zhao, High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays, Environ. Sci. Technol., 49 (2015) 5828–5835.
  42. I-F. Cheng, F. Quintus, K. Nic, Electrochemical dechlorination of 4-chlorophenol to phenol, Environ. Sci. Technol., 31 (1997) 1074–1078.
  43. Y. Wu, L. Gan, S. Zhang, B. Jiang, H. Song, W. Li, Y. Pan, A. Li, Enhanced electrocatalytic dechlorination of para-chloronitrobenzene based on Ni/Pd foam electrode, Chem. Eng. J., 316 (2017) 146–153.
  44. F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, Appl. Catal., B, 202 (2017) 217–261.
  45. W. Zhang, D. Xie, X. Li, W. Ye, X. Jiang, Y. Wang, W. Liang, Electrocatalytic removal of humic acid using cobalt-modified particle electrodes, Appl. Catal., A, 559 (2018) 75–84.
  46. J. Ma, M. Yan, A.M. Kuznetsov, A.N. Masliy, G. Ji, G.V. Korshin, Rotating ring-disk electrode and quantum-chemical study of the electrochemical reduction of monoiodoacetic acid and iodoform, Environ. Sci. Technol., 49 (2015) 13542–13549.
  47. G. Ding, X. Zhang, A picture of polar iodinated disinfection byproducts in drinking water by (UPLC/)ESI-tqMS, Environ. Sci. Technol., 43 (2009) 9287–9293.
  48. M. Yang, X. Zhang, Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii, Environ. Sci. Technol., 47 (2013) 10868–10876.
  49. J. Liu, X. Zhang, Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: halophenolic DBPs are generally more toxic than haloaliphatic ones, Water Res., 65 (2014) 64–72.
  50. J.A. Warner, W.H. Casey, R.A. Dahlgren, Interaction kinetics of I2 (aq) with substituted phenols and humic substances, Environ. Sci. Technol., 34 (2000) 3180–3185.