1. I. Mohmood, C.B. Lopes, I. Lopes, I. Ahmad, A.C. Duarte, E. Pereira, Nanoscale materials and their use in water contaminants removal—a review, Environ. Sci. Pollut. Res., 20 (2013) 1239–1260.
  2. S. Naidoo, A.O. Olaniran, Treated wastewater effluent as a source of microbial pollution of surface water resources, Int. J. Environ. Res. Public Health, 11 (2014) 249–270.
  3. L. Tan, S.X. Ning, X.W. Zhang, S.N. Shi, Aerobic decolorization and degradation of azo dyes by growing cells of a newly isolated yeast Candida tropicalis TL-F1, Bioresour. Technol., 138 (2013) 307–313.
  4. E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide, J. Hazard. Mater., 136 (2006) 85–94.
  5. Z.P. Cao, J.H. Zhang, J.L. Zhang, H.W. Zhang, Degradation pathway and mechanism of Reactive Brilliant Red X-3B in electro-assisted microbial system under anaerobic condition, J. Hazard. Mater., 329 (2017) 159–165.
  6. S.S. Swati, A.N. Faruqui, Investigation on ecological parameters and COD minimization of textile effluent generated after dyeing with mono and bi-functional reactive dyes, Environ. Technol. Innovation, 11 (2018) 165–173.
  7. J. Wang, Y.N. Yan, L.L. Tian, Q.M. Wang, Y. Zhang, W.Q. Cao, C. Yang, Efficient electrochemical oxidation of charged cryogel adsorbed reactive dyes in non-aqueous media, Water Air Soil Pollut., 229 (2018) 180, s11270-018-3833-y.
  8. R.D. Saini, Textile organic dyes: polluting effects and elimination methods from textile waste water, Int. J. Eng. Sci., 9 (2017) 121–136.
  9. C.M. So, M.Y. Cheng, J.C. Yu, P.K. Wong, Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation, Chemosphere, 46 (2002) 905–912.
  10. J. Grzechulska, A.W. Morawski, Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide, Appl. Catal., B, 36 (2002) 45–51.
  11. S.C. Kwon, M.H. Fan, A.T. Cooper, H.Q. Yang, Photocatalytic applications of micro- and nano-TiO2 in environmental engineering, Crit. Rev. Env. Sci. Technol., 38 (2008) 197–226.
  12. K.M. Reza, A.S.W. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Appl. Water Sci., 7 (2017) 1569–1578.
  13. M.Y. Ghaly, T.S. Jamil, I.E. EI-Seesy, E.R. Souaya, R.A. Nasr, Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano-TiO2, Chem. Eng. J., 168 (2011) 446–454.
  14. A. Zaleska, Doped-TiO2: a review, Recent Pat. Eng., 2 (2008) 157–164.
  15. A.R. Khataee, V. Vatanpour, A.R. Amani Ghadim, Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative study, J. Hazard. Mater., 161 (2009) 1225–1233.
  16. Y. Kuwahara, T. Kamegawa, K. Mori, H. Yamashita, Design of new functional titanium oxide-based photocatalysts for degradation of organics diluted in water and air, Curr. Org. Chem., 14 (2010) 616–629.
  17. N. Taoufik, A. Elmchaouri, F. Anouar, S.A. Korili, A. Gil, Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants, J. Water Process Eng., 31 (2019) 100876, https://
  18. D.M. Chen, Q. Zhu, F.S. Zhou, X.T. Deng, F.T. Li, Synthesis and photocatalytic performances of the TiO2 pillared montmorillonite, J. Hazard. Mater., 235 (2012) 186–193.
  19. K. Ikeue, H. Yamashita, M. Anpo, T. Takewaki, Photocatalytic reduction of CO2 with H2O on Ti−β zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties, J. Phys. Chem., B, 105 (2001) 8350–8355.
  20. M.A. Fox, K.E. Doan, M.T. Dulay, The effect of the “Inert” support on relative photocatalytic activity in the oxidative decomposition of alcohols on irradiated titanium dioxide composites, Res. Chem. Intermed., 20 (1994) 711, https://doi. org/10.1163/156856794X00504.
  21. Y.J. Li, X.D. Li, J.W. Li, J. Yin, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study, Water Res., 40 (2006) 1119–1126.
  22. J.-H. Sun, Y.-K. Wang, R.-X. Sun, S.-Y. Dong, Photodegradation of azo dye Congo Red from aqueous solution by the WO3–TiO2/activated carbon (AC) photocatalyst under the UV irradiation, Mater. Chem. Phys., 115 (2009) 303–308.
  23. M. Asiltürk, S. Şener, TiO2-activated carbon photocatalysts: preparation, characterization and photocatalytic activities, Chem. Eng. J., 180 (2012) 354–363.
  24. R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Enhanced photocatalytic activity of TiO2-coated NaY and HY zeolites for the degradation of methylene blue in water, Ind. Eng. Chem. Res., 46 (2007) 369–376.
  25. S.F. Chen, Y.Z. Liu, Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst, Chemosphere, 67 (2007) 1010–1017.
  26. M.V. Bosco, M. Garrido, M.S. Larrechi, Determination of phenol in the presence of its principal degradation products in water during a TiO2-photocatalytic degradation process by threedimensional excitation–emission matrix fluorescence and parallel factor analysis, Anal. Chim. Acta, 559 (2006) 240–247.
  27. A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec, K. Pokomeda, Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process, Bioresour. Technol., 160 (2014) 150–160.
  28. Y.H. Tan, M.O. Abdullah, C. Nolasco-Hipolito, N.S.A. Zauzi, Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO, Renewable Energy, 114 (2017) 437–447.
  29. J.A. Pinto, M.A. Prieto, I.C.F.R. Ferreira, M.N. Belgacem, A.E. Rodrigues, M.F. Barreiro, Analysis of the oxypropylation process of a lignocellulosic material, almond shell, using the response surface methodology (RSM), Ind. Crops Prod., 153 (2020) 112542,
  30. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
  31. U. Natarajan, P.R. Periyanan, S.H. Yang, Multiple-response optimization for micro-endmilling process using response surface methodology, Int. J. Adv. Manuf. Technol., 56 (2011) 177–185.
  32. S. Daneshgar, P.A. Vanrolleghem, C. Vaneeckhaute, A. Buttafava, A.G. Capodaglio, Optimization of P compounds recovery from aerobic sludge by chemical modeling and response surface methodology combination, Sci. Total Environ., 668 (2019) 668–677.
  33. G.J. Swamy, A. Sangamithra, V. Chandrasekar, Response surface modeling and process optimization of aqueous extraction of natural pigments from Beta vulgaris using Box–Behnken design of experiments, Dyes Pigm., 111 (2014) 64–74.
  34. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, JWA, America, 2016.
  35. F. Geyikçi, E. Kılıç, S. Çoruh, S. Elevli, Modelling of lead adsorption from industrial sludge leachate on red mud by using RSM and ANN, Chem. Eng. J., 183 (2012) 53–59.
  36. M. Boumaaza, A. Belaadi, M. Bourchak, The effect of alkaline treatment on mechanical performance of natural fibersreinforced plaster: optimization using RSM, J. Nat. Fibers (2020) 1–21,
  37. X.K. Li, L.X. Yang, Y. Zhang, W.J. Zhang, Polyethylene glycol in sol-gel precursor to prepare porous Gd2Ti2O7: enhanced photocatalytic activity on Reactive Brilliant Red X-3B degradation, Mater. Sci. Semicond. Process., 117 (2020) 105181,
  38. H. Deng, Y.H. Wang, X.C. Zhang, X.Q. Kou, B. Chen, C.C. Zhu, Photodegradation under natural indoor weak light assisted adsorption of X-3B on TiO2/Al2O3 nanocomposite, Chem. Eng. J., 372 (2019) 99–106.
  39. V. Kumar, P. Saharan, A.K. Sharma, A. Umar, I. Kaushal, A. Mittal, Y. Al-Hadeethi, B. Rashad, Silver doped manganese oxide-carbon nanotube nanocomposite for enhanced dyesequestration: isotherm studies and RSM modelling approach, Ceram. Int., 54 (2020) 109–116.
  40. A.G. Khorram, N. Fallah, Treatment of textile dyeing factory wastewater by electrocoagulation with low sludge settling time: optimization of operating parameters by RSM, J. Environ. Eng., 6 (2018) 635–642.