1. Y. Kassem, H. Gökçekuş, Water resources and rainfall distribution function: a case study in Lebanon, Desal. Water Treat., 177 (2020) 306–321.
  2. S. Kundu, D. Khare, A. Mondal, Future changes in rainfall, temperature, and reference evapotranspiration in central India by least square support vector machine, Geosci. Front., 8 (2017) 583–596.
  3. S. Dercon, L. Christiaensen, Consumption risk, technology adoption and poverty traps: evidence from Ethiopia, SSRN Electron. J., 4257 (2008) 1–41.
  4. S.D. Falco, J.P. Chavas, On crop biodiversity, risk exposure, and food security in the highlands of Ethiopia, Am. J. Agric. Econ., 91 (2009), 599–611.
  5. M. Amare, N.D. Jensen, B. Shiferaw, J.D. Cissé, Rainfall shocks and agricultural productivity: implication for rural household consumption, Agric. Syst., 166 (2018) 79–89.
  6. O.E. Olayide, O.T. Alabi, Between rainfall and food poverty: assessing vulnerability to climate change in an agricultural economy, J. Cleaner Prod., 198 (2018) 1–10.
  7. O.E. Olayide, I.K. Tetteh, L. Popoola, Differential impacts of rainfall and irrigation on agricultural production in Nigeria: any lessons for climate-smart agriculture?, Agric. Water Manage, 178 (2016) 30–36.
  8. A.F. Ribeiro, A. Russo, C.M. Gouveia, P. Páscoa, Copula-based agricultural drought risk of rainfed cropping systems, Agric. Water Manage., 223 (2019) 105689, doi: 10.1016/j.agwat.2019.105689.
  9. M. Song, R. Wang, X. Zeng, Water resources utilization efficiency and influence factors under environmental restrictions, J. Cleaner Prod., 184 (2018) 611–621.
  10. S. Kundu, D. Khare, A. Mondal, Future changes in rainfall, temperature and reference evapotranspiration in the central India by least square support vector machine, Geosci. Front., 8 (2017) 583–596.
  11. N. Seino, T. Aoyagi, H. Tsuguti, Numerical simulation of urban impact on precipitation in Tokyo: how does urban temperature rise affect precipitation?, Urban Clim., 23 (2018) 8–35.
  12. T. Iizumi, N. Ramankutty, How do weather and climate influence cropping area and intensity?, Global Food Secur., 4 (2015) 46–50.
  13. R.K. Chowdhury, S. Beecham, Influence of SOI, DMI and niño3.4 on south Australian rainfall, Stochastic Environ. Res. Risk Assess., 27 (2013) 1909–1920.
  14. O.P. Agboola, F. Egelioglu, Water scarcity in north Cyprus and solar desalination research: a review, Desal. Water Treat., 43 (2012) 29–42.
  15. G. Elkiran, F. Aslanova, S. Hiziroglu, Effluent water reuse possibilities in northern Cyprus, Water, 11 (2019) 1–13, doi: 10.3390/w11020191.
  16. A. Sofroniou, S. Bishop, Water scarcity in cyprus: a review and call for integrated policy, Water, 6 (2014) 2898–2928.
  17. A.K. Sahai, M.K. Soman, V. Satyan, All India summer monsoon rainfall prediction using an artificial neural network, Clim. Dyn., 16 (2000) 291–302.
  18. O.A. Nnaji, Forecasting seasonal rainfall for agricultural decision-making in northern Nigeria, Agric. For. Meteorol., 107 (2001) 193–205.
  19. T.B. Trafalis, B. Santosa, M.B. Richman, Learning networks in rainfall estimation, Comput. Manage. Sci., 2 (2005) 229–251.
  20. S. Chattopadhyay, Feed forward artificial neural network model to predict the average summer-monsoon rainfall in India, Acta Geophys., 55 (2007) 369–382.
  21. Z.L. Wang, H.H. Sheng, Rainfall Prediction Using Generalized Regression Neural Network: Case Study Zhengzhou, 2010 International Conference on Computational and Information Sciences, Zhengzhou, 2010.
  22. C.G. Udomboso, G.N. Amahia, Comparative analysis of rainfall prediction using statistical neural network and classical linear regression model, J. Mod. Math. Stat., 5 (2011) 66–70.
  23. K. Abhishek, A. Kumar, R. Ranjan, S. Kumar, A Rainfall Prediction Model Using Artificial Neural Network, 2012 IEEE Control and System Graduate Research Colloquium, Shah Alam, Selangor, Malaysia, 2012.
  24. S.S. Kashid, R. Maity, Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using genetic programming, J. Hydrol., 454 (2012) 26–41.
  25. S.A. Akrami, A. El-Shafie, O. Jaafar, Improving rainfall forecasting efficiency using modified adaptive neuro-fuzzy inference system (MANFIS), Water Resour. Manage., 27 (2013) 3507–3523.
  26. M.K. Goyal, Monthly rainfall prediction using wavelet regression and neural network: an analysis of 1901–2002 data, Assam, India, Theor. Appl. Climatol., 118 (2013) 25–34.
  27. J. Kajornrit, K.W. Wong, C.C. Fung, Y.S. Ong, An Integrated Intelligent Technique for Monthly Rainfall Time Series Prediction, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 2014.
  28. S.A. Akrami, V. Nourani, S.J.S. Hakim, Development of nonlinear model based on wavelet-ANFIS for rainfall forecasting at Klang Gates Dam, Water Resour. Manage., 28 (2014) 2999–3018.
  29. J. Farajzadeh, A.F. Fard, S. Lotfi, Modeling of monthly rainfall and runoff of Urmia lake basin using “feed-forward neural network” and “time series analysis” model, Water Resour. Ind., 7–8 (2014) 38–48.
  30. J. Abbot, J. Marohasy, Input selection and optimization for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks, Atmos Res., 138 (2014) 166–178.
  31. J. Marohasy, J. Abbot, Assessing the quality of eight different maximum temperature time series as inputs when using artificial neural networks to forecast monthly rainfall at Cape Otway, Australia, Atmos. Res., 166 (2015) 141–149.
  32. A. Chaturvedi, Rainfall prediction using back-propagation feed forward network, Int. J. Comput. Appl., 119 (2015) 1–5.
  33. Mislan, Haviluddin, S. Hardwinarto, Sumaryono, M. Aipassa, Rainfall monthly prediction based on artificial neural network: a case study in Tenggarong Station, East Kalimantan – Indonesia, Procedia Comput. Sci., 59 (2015) 142–151.
  34. A. Kumar, N. Tyagi, Comparative Analysis of Backpropagation and RBF Neural Network on Monthly Rainfall Prediction, 2016 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 2016.
  35. N. Khalili, S.R. Khodashenas, K. Davary, M.M. Baygi, F. Karimaldini, Prediction of rainfall using artificial neural networks for synoptic station of Mashhad: a case study, Arabian J. Geosci., 9 (2016), doi: 10.1007/s12517-016-2633-1.
  36. I.O. Ewona, J.E. Osang, U.I. Uquetan, E.O. Inah, S.O. Udo, Rainfall prediction in Nigeria using artificial neural networks, Int. J. Sci. Eng. Res., 7 (2016) 1157–1169.
  37. R. Hashim, C. Roy, S. Motamedi, S. Shamshirband, D. Petković, M. Gocic, S.C. Lee, Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology, Atmos. Res., 171 (2016) 21–30.
  38. S.R. Devi, P. Arulmozhivarman, C. Venkatesh, P. Agarwal, Performance comparison of artificial neural network models for daily rainfall prediction, Int. J. Autom. Comput., 13 (2016) 417–427.
  39. H.D. Purnomo, K.D. Hartomo, S.Y.J. Prasetyo, Artificial neural network for monthly rainfall rate prediction, IOP Conf. Ser.: Mater. Sci. Eng., 180 (2017) 1–9, doi: 10.1088/ 1757-899X/180/1/012057.
  40. T.S. Abdulkadir, A.W. Salami, A.S. Aremu, A.M. Ayanshola, D.O. Oyejobi, Assessment of neural networks performance in modeling rainfall amounts, J. Res. For. Wildl. Environ., 9 (2017) 12–22.
  41. A.M. Bagirov, A. Mahmood, A. Barton, Prediction of monthly rainfall in Victoria, Australia: clusterwise linear regression approach, Atmos. Res., 188 (2017) 20–29.
  42. T. Kashiwao, K. Nakayama, S. Ando, K. Ikeda, M. Lee, A. Bahadori, A neural network-based local rainfall prediction system using meteorological data on the internet: a case study using data from the Japan meteorological agency, Appl. Soft Comput., 56 (2017) 317–330.
  43. Y. Xiang, L. Gou, L. He, S. Xia, W. Wang, A SVR–ANN combined model based on ensemble EMD for rainfall prediction, Appl. Soft Comput., 73 (2018) 874–883.
  44. R. Mirabbasi, O. Kisi, H. Sanikhani, S.G. Meshram, Monthly long-term rainfall estimation in Central India using M5Tree, MARS, LSSVR, ANN and GEP models, Neural Comput. Appl., 31 (2018) 6843–6862.
  45. M. Zeynoddin, H. Bonakdari, A. Azari, I. Ebtehaj, B. Gharabaghi, H.R. Madavar, Novel hybrid linear stochastic with non-linear extreme learning machine methods for forecasting monthly rainfall a tropical climate, J. Environ. Manage., 222 (2018) 190–206.
  46. A. Bello, M. Mamman, Monthly rainfall prediction using artificial neural network: a case study of Kano, Nigeria, Environ. Earth Sci. Res. J., 5 (2018) 37–41.
  47. N. Rodi, M. Malek, A. Ismail, Monthly rainfall prediction model of peninsular Malaysia using clonal selection algorithm, Int. J. Eng. Technol., 7 (2018) 182–185.
  48. S. Hudnurkar, N. Rayavarapu, Performance of Artificial Neural Network in Nowcasting Summer Monsoon Rainfall: A case Study, IEEE Punecon, Pune, 2018.
  49. E.E. Peter, E.E. Precious, Skill comparison of multiple-linear regression model and artificial neural network model in seasonal rainfall prediction-north east Nigeria, Asian Res. J. Math., 11 (2018) 1–10.
  50. S. Chattopadhyay, G. Chattopadhyay, Conjugate gradient descent learned ANN for Indian summer monsoon rainfall and efficiency assessment through Shannon-Fano coding, J. Atmos. Sol. Terr. Phys., 179 (2018) 202–205.
  51. Y. Dash, S.K. Mishra, B.K. Panigrahi, Rainfall prediction for the Kerala state of India using artificial intelligence approaches, Comput. Electr. Eng., 70 (2018) 66–73.
  52. R. Mohammadpour, Z. Asaie, M.R. Shojaeian, M. Sadeghzadeh, A hybrid of ANN and CLA to predict rainfall, Arabian J. Geosci., 11 (2018), doi: 10.1007/s12517-018-3804-z.
  53. D.T. Anh, T.D. Dang, S.P. Van, Improved rainfall prediction using combined pre-processing methods and feed-forward neural networks, J, 2 (2019) 65–83.
  54. I.R. Ilaboya, O.E. Igbinedion, Performance of multiple linear regression (MLR) and artificial neural network (ANN) for the prediction of monthly maximum rainfall in Benin City, Nigeria, Int. J. Eng. Sci. Appl., 3 (2019) 21–37.
  55. L.C.P. Velasco, R.P. Serquiña, M.S.A. Zamad, B.F. Juanico, J.C. Lomocso, Week-ahead rainfall forecasting using multilayer perceptron neural network, Procedia Comput. Sci., 161 (2019) 386–397.
  56. I. Hossain, H.M. Rasel, M. Imteaz, F. Mekanik, Long-term seasonal rainfall forecasting using linear and non-linear modelling approaches: a case study for Western Australia, Meteorol. Atmos. Phys., 132 (2019) 131–141.
  57. Y. Lin, P.C. Lee, K.C. Ma, C.C. Chiu, A hybrid grey model to forecast the annual maximum daily rainfall, KSCE J. Civ. Eng., 23 (2019) 4933–4948.
  58. A.P. Ayodele, E.E. Precious, Seasonal rainfall prediction in Lagos, Nigeria using artificial neural network, Asian J. Res. Comput. Sci., 3 (2019) 1–10.
  59. N. Bensafi, M. Lazri, S. Ameur, Novel WkNN-based technique to improve instantaneous rainfall estimation over the north of Algeria using the multispectral MSG SEVIRI imagery, J. Atmos. Sol. Terr. Phys., 183 (2019) 110–119.
  60. S.H. Pour, A.K.A. Wahab, S. Shahid, Physical-empirical models for prediction of seasonal rainfall extremes of Peninsular Malaysia, Atmos. Res., 233 (2020), doi: 10.1016/j. atmosres.2019.104720.
  61. B.T. Pham, L.M. Le, T.T. Le, K.T. Bui, V.M. Le, H.B. Ly, I. Prakash, Development of advanced artificial intelligence models for daily rainfall prediction, Atmos. Res., 237 (2020), doi: 10.1016/j. atmosres.2020.104845.
  62. M. Ali, R. Prasad, Y. Xiang, Z.M. Yaseen, Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts, J. Hydrol., 584 (2020), doi: 10.1016/j.jhydrol.2020.124647.
  63. H. Gökçekuş, Y. Kassem, J. Aljamal, Analysis of different combinations of meteorological parameters in predicting rainfall with an ANN approach: a case study in Morphou, Northern Cyprus, Desal. Water Treat., 177 (2020) 350–362.
  64. L. Diop, S. Samadianfard, A. Bodian, Z.M. Yaseen, M.A. Ghorbani, H. Salimi, Annual rainfall forecasting using hybrid artificial intelligence model: integration of multilayer perceptron with whale optimization algorithm, Water Resour. Manage., 34 (2020) 733–746.
  65. K.L. Chong, S.H. Lai, Y. Yao, A.N. Ahmed, W.Z. Jaafar, A. El-Shafie, Performance enhancement model for rainfall forecasting utilizing integrated wavelet-convolutional neural network, Water Resour. Manage., 34 (2020) 2371–2387.
  66. V. Nourani, S. Uzelaltinbulat, F. Sadikoglu, N. Behfar, Artificial intelligence based ensemble modeling for multi-station prediction of precipitation, Atmosphere, 10 (2019), doi: 10.3390/ atmos10020080.
  67. D.J. Livingstone, Artificial Neural Networks, Methods in Molecular Biology™, Humana Press, New York, 2009.
  68. Y. Kassem, H. Çamur, E. Esenel, Adaptive neuro-fuzzy inference system (ANFIS) and response surface methodology (RSM) prediction of biodiesel dynamic viscosity at 313 K, Procedia Comput. Sci., 120 (2017) 521–528.
  69. J. Cho, J. Lee, Multiple linear regression models for predicting nonpoint-source pollutant discharge from a highland agricultural region, Water, 10 (2018) 1–17, doi: 10.3390/ w10091156.
  70. G. Tegegne, D.K. Park, Y.O. Kim, Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin, J. Hydrol. Reg. Stud., 14 (2017) 49–66.