1. R. Verma, K.S. Vinoda, M. Papireddy, A.N.S. Gowda, Toxic pollutants from plastic waste - a review, Procedia Environ. Sci., 35 (2016) 701–708.
  2. S.A. Ashter, Introduction to Bioplastics Engineering, William Andrew, 2016.[AQ1]
  3. L.S. Dilkes-Hoffman, J.L. Lane, T. Grant, S. Pratt, P.A. Lant, B. Laycock, Environmental impact of biodegradable food packaging when considering food waste, J. Cleaner Prod., 180 (2018) 325–334.
  4. T. Mekonnen, P. Mussone, H. Khalil, D. Bressler, Progress in bio-based plastics and plasticizing modifications, J. Mater. Chem. A, 1 (2013) 13379–13398.
  5. Z.A. Raza, S. Abid, I.M. Banat, Polyhydroxyalkanoates: characteristics, production, recent developments and applications, Int. Biodeterior. Biodegrad., 126 (2018) 45–56.
  6. H. Takabatake, H. Satoh, T. Mino, T. Matsuo, Recovery of biodegradable plastics from activated sludge process, Water Sci. Technol., 42 (2000) 351–356.
  7. E. Bugnicourt, P. Cinelli, A. Lazzeri, V. Alvarez, Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging, eXPRESS Polym. Lett., 8 (2014) 791–808.
  8. M.A. Hassan, L.-N. Yee, P.-L. Yee, H. Ariffin, A.R. Raha, Y. Shirai, Y., K. Sudesh, Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass, Biomass Bioenergy, 50 (2013) 1–9.
  9. J.E. Yang, S.Y. Choi, J.H. Shin, S.J. Park, S.Y. Lee, Microbial production of lactate-containing polyesters, Microb. Biotechnol., 6 (2013) 621–636.
  10. S. Yan, R.D. Bala Subramanian, R.D. Tyagi, R.Y. Surampalli, Chapter 6 – Bioplastics from Activated Sludge, R.D. Tyagi, R.Y. Surampalli, S. Yan, T.C. Zhang, C.M. Kao, B.N. Lohani, Eds., Sustainable Sludge Management: Production of Value Added Products, American Society of Civil Engineers, 2009, pp. 123–145.
  11. P. Basnett, I. Roy, Microbial Production of Biodegradable Polymers and Their Role in Cardiac Stent Development, A. Méndez-Vilas, Eds., Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Formatex Research Center, 2010, pp. 1405–1415.
  12. F. Morgan-Sagastume, S. Heimersson, G. Laera, A. Werker, M. Svanström, Techno-environmental assessment of integrating polyhydroxyalkanoate (PHA) production with services of municipal wastewater treatment, J. Cleaner Prod., 137 (2016) 1368–1381.
  13. L.S. Serafim, P.C. Lemos, M.G.E. Albuquerque, M.A.M. Reis, Strategies for PHA production by mixed cultures and renewable waste materials, Appl. Microbiol. Biotechnol., 81 (2008) 615–628.
  14. S. Chanprateep, Current trends in biodegradable polyhydroxyalkanoates, J. Biosci. Bioeng., 110 (2010) 621–632.
  15. C. Hong, H. Hao, W. Haiyun, Process optimization for PHA production by activated sludge using response surface methodology, Biomass Bioenergy, 33 (2009) 721–727.
  16. A.S.M. Chua, H. Takabatake, H. Satoh, T. Mino, Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: effect of pH, sludge retention time (SRT), and acetate concentration in influent, Water Res., 37 (2003) 3602–3611.
  17. F. Morgan-Sagastume, F. Valentino, M. Hjort, D. Cirne, L. Karabegovic, F. Gerardin, P. Johansson, A. Karlsson, P. Magnusson, T. Alexandersson, S. Bengtsson, M. Majone, A. Werker, Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment, Water Sci. Technol., 69 (2014) 177–184.
  18. Y. Jiang, L. Marang, J. Tamis, M.C.M. van Loosdrecht, H. Dijkman, R. Kleerebezem, Waste to resource: converting paper mill wastewater to bioplastic, Water Res., 46 (2012) 5517–5530.
  19. L. Montano-Herrera, B. Laycock, A. Werker, S. Pratt, The evolution of polymer composition during PHA accumulation: the significance of reducing equivalents, Bioengineering, 4 (2017) 20, doi: 10.3390/bioengineering4010020.
  20. M.G.E. Albuquerque, C.A.V. Torres, M.A.M. Reis, Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: effect of the influent substrate concentration on culture selection, Water Res., 44 (2010) 3419–3433.
  21. M.V. Reddy, S.V. Mohan, Effect of substrate load and nutrients concentration on the polyhydroxyalkanoates (PHA) production using mixed consortia through wastewater treatment, Bioresour. Technol., 114 (2012) 573–582.
  22. W.S. Lee, A.S.M. Chua, H.K. Yeoh, G.C. Ngoh, A review of the production and applications of waste-derived volatile fatty acids, Chem. Eng. J., 235 (2014) 83–99.
  23. A.A. Bazyar Lakeh, A. Azizi, E. Hosseini Koupaie, V. Bekmuradov, H. Hafez, E. Elbeshbishy, A comprehensive study for characteristics, acidogenic fermentation, and anaerobic digestion of source separated organics, J. Cleaner Prod., 228 (2019) 73–85.
  24. Y. Jiang, L. Marang, R. Kleerebezem, G. Muyzer, M.C.M. van Loosdrecht, Polyhydroxybutyrate production from lactate using a mixed microbial culture, Biotechnol. Bioeng., 108 (2011) 2022–2035.
  25. S. Bengtsson, A. Werker, M. Christensson, T. Welander, Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater, Bioresour. Technol., 99 (2008) 509–516.
  26. A. Banerjee, P. Elefsiniotis, D. Tuhtar, Effect of HRT and temperature on the acidogenesis of municipal primary sludge and industrial wastewater, Water Sci. Technol., 38 (1998) 417–423.
  27. M.B. Salerno, H.-S. Lee, P. Parameswaran, B.E. Rittmann, Using a pulsed electric field as a pretreatment for improved biosolids digestion and methanogenesis, Water Environ. Res., 81 (2009) 831–839.
  28. B.E. Rittmann, P.L. McCarthy, Environmental Biotechnology: Principles and Applications, Tata McGraw Hill Education Private Limited, 2012.
  29. H.G. Yu, H.H. Fang, Acidogenesis of dairy wastewater at various pH levels, Water Sci. Technol., 45 (2002) 201–206.
  30. K. Wang, J. Yin, D. Shen, N. Li, Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH, Bioresour. Technol., 161 (2014) 395–401.
  31. T.J. Britz, C. van Schalkwyk, Y.-T. Hung, Treatment of Dairy Processing Wastewaters, Taylor & Francis Group, LLC, 2006.
  32. F. Carvalho, A.R. Prazeres, J. Rivas, Cheese whey wastewater: characterization and treatment, Sci. Total Environ., 445–446 (2013) 385–396.
  33. R.H. Zhang, H.M. El-Mashad, K. Hartman, F.Y. Wang, G.Q. Liu, C. Choate, P. Gamble, Characterization of food waste as feedstock for anaerobic digestion, Bioresour. Technol., 98 (2007) 929–935.
  34. B. Colombo, F. Favini, B. Scaglia, T.P. Sciarria, G. D’Imporzano, M. Pognani, A. Alekseeva, G. Eisele, C. Cosentino, F. Adani, Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture, Biotechnol. Biofuels, 10 (2017) 201, doi: 10.1186/s13068-017-0888-8.
  35. B.K. Adhikari, S. Barrington, J. Martinez, S. King, Characterization of food waste and bulking agents for composting, Waste Manage., 28 (2008) 795–804.
  36. H. Fisgativa, A. Tremier, P. Dabert, Characterizing the variability of food waste quality: a need for efficient valorisation through anaerobic digestion, Waste Manage., 50 (2016) 264–274.
  37. C.M. Braguglia, A. Gallipoli, A. Gianico, P. Pagliaccia, Anaerobic bioconversion of food waste into energy: a critical review, Bioresour. Technol., 248 (2018) 37–56.
  38. Y.-H. Lin, H.-X. Zheng, M.-L. Juan, Biohydrogen production using waste activated sludge as a substrate from fructoseprocessing wastewater treatment, Process Saf. Environ. Prot., 90 (2012) 221–230.
  39. S.V. Mohan, L. Agarwal, G. Mohanakrishna, S. Srikanth, A. Kapley, H.J. Purohit, P.N. Sarma, Firmicutes with iron dependent hydrogenase drive hydrogen production in anaerobic bioreactor using distillery wastewater, Int. J. Hydrogen Energy, 36 (2011) 8234–8242.
  40. M. Koller, L. Maršálek, M.M. de Sousa Dias, G. Braunegg, Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner, New Biotechnol., 37 (2017) 24–38.
  41. M. Koller, A. Salerno, A. Muhr, A. Reiterer, G. Braunegg, Polyhydroxyalkanoates: biodegradable polymers and plastics from renewable resources, Mater. Tehnol., 47 (2013) 5–12.
  42. M.M. Zhang, H.Y. Wu, H. Chen, Coupling of polyhydroxyalkanoate production with volatile fatty acid from food wastes and excess sludge, Process Saf. Environ. Prot., 92 (2014) 171–178.
  43. C. Nielsen, A. Rahman, A.U. Rehman, M.K. Walsh, C.D. Miller, Food waste conversion to microbial polyhydroxyalkanoates, Microb. Biotechnol., 10 (2017) 1338–1352.
  44. K. Amulya, M.V. Reddy, M.V. Rohit, S.V. Mohan, Wastewater as renewable feedstock for bioplastics production: understanding the role of reactor microenvironment and system pH, J. Cleaner Prod., 112 (2016) 4618–4627.
  45. ISO 6060, Water Quality-Determination of the Chemical Oxygen Demand, International Organization for Standardization, Switzerland, Geneva, 1986.
  46. APHA/AWWA/WEF, Standard Methods for the Examination of Water and Wastewater, 21st ed., Vol. 21, American Public Health Association, Washington, D.C., 2005.
  47. J.J. Beun, F. Paletta, M.C.M. Van Loosdrecht, J.J. Heijnen, Stoichiometry and kinetics of poly-β-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures, Biotechnol. Bioeng., 67 (2000) 379–389.
  48. B. Colombo, T.P. Sciarria, M. Reis, B. Scaglia, F. Adani, Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture, Bioresour. Technol., 218 (2016) 692–699.