1. A. Subramani, J.G. Jacangelo, Emerging desalination technologies for water treatment: a critical review, Water Res. 75 (2015) 164–187.
  2. M. Chandrashekara, A. Yadav, Water desalination system using solar heat: a review, Renewable Sustainable Energy Rev., 67 (2017) 1308–1330.
  3. H. Yoon, K. Jo, K.J. Kim, J.Y. Yoon, Effects of characteristics of cation exchange membrane on desalination performance of membrane capacitive deionization, Desalination, 458 (2019) 116–121.
  4. M.S. Mohsen, B. Akash, A.A. Abdo, O. Akash, Energy options for water desalination in UAE, Procedia Comput. Sci., 83 (2016) 894–901.
  5. S. Gorjian, B. Ghobadian, Solar desalination: a sustainable solution to water crisis in Iran, Renewable Sustainable Energy Rev., 48 (2015) 571–584.
  6. D. He, C.E. Wong, W.W. Tang, P. Kovalsky, T.D. Waite, Faradaic reactions in water desalination by batch-mode capacitive deionization, Environ. Sci. Technol. Lett., 3 (2016) 222–226.
  7. M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?, Electrochim. Acta, 55 (2010) 3845–3856.
  8. S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
  9. S. Sen Gupta, M.R. Islam, T. Pradeep, Chapter 7 – Capacitive Deionization (CDI): An Alternative Cost-Efficient Desalination Technique, S. Ahuja, Ed., Advances in Water Purification Techniques: Meeting the Needs of Developed and Developing Countries, Elsevier, Radarweg 29, P.O. Box: 211, 1000 AE Amsterdam, Netherlands, 2019, pp. 165–202.
  10. M. Wang, X.T. Xu, Y.J. Li, T. Lu, L.K. Pan, Enhanced desalination performance of anion-exchange membrane capacitive deionization via effectively utilizing cathode oxidation, Desalination, 443 (2018) 221–227.
  11. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8 (2015) 2296–2319.
  12. W.Q. Kong, X.D. Duan, Y.J. Ge, H.T. Liu, J.W. Hu, X.F. Duan, Holey graphene hydrogel with in-plane pores for highperformance capacitive desalination, Nano Res., 9 (2016) 2458–2466.
  13. Y.H. Bian, X.F. Yang, P. Liang, Y. Jiang, C.Y. Zhang, X. Huang, Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon, Water Res., 85 (2015) 371–376.
  14. H.B. Li, Y.L. Ma, R. Niu, Improved capacitive deionization performance by coupling TiO2 nanoparticles with carbon nanotubes, Sep. Purif. Technol., 171 (2016) 93–100.
  15. Z. Peng, D.S. Zhang, L.Y. Shi, T.T. Yan, High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization, J. Mater. Chem., 22 (2012) 6603–6612.
  16. M.C. Zafra, P. Lavela, G. Rasines, C. Macías, J.L. Tirado, C.O. Ania, A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water, Electrochim. Acta, 135 (2014) 208–216.
  17. C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli, S. Dai, Mesoporous carbon for capacitive deionization of saline water, Environ. Sci. Technol., 45 (2011) 10243–10249.
  18. B. Milow, L. Ratke, S. Ludwig, Citric Acid Catalyzed Organic Aerogels, Proc. Seminar on Aerogels, 2012, pp. 155–165.
  19. G. Rasines, P. Lavela, C. Macías, M.C. Zafra, J.L. Tirado, J.B. Parra, C.O. Ania, N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions, Carbon, 83 (2015) 262–274.
  20. M.E. Suss, T.F. Baumann, W.L. Bourcier, C.M. Spadaccini, K.A. Rose, J.G. Santiago, M. Stadermann, Capacitive desalination with flow-through electrodes, Energy Environ. Sci., 5 (2012) 9511–9519.
  21. P. Xu, J.E. Drewes, D. Heil, G. Wang, Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 42 (2008) 2605–2617.
  22. G.J. Doornbusch, J.E. Dykstra, P.M. Biesheuvel, M.E. Suss, Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization, J. Mater. Chem. A, 4 (2016) 3642–3647.
  23. M. Pasta, C.D. Wessells, Y. Cui, F. La Mantia, A desalination battery, Nano Lett., 12 (2012) 839–843.
  24. F. He, P.M. Biesheuvel, M.Z. Bazant, T.A. Hatton, Theory of water treatment by capacitive deionization with redox active porous electrodes, Water Res. 132 (2018) 282–291.
  25. Y.H. Liu, W. Ma, Z.H. Cheng, J. Xu, R. Wang, X. Gang, Preparing CNTs/Ca-Selective zeolite composite electrode to remove calcium ions by capacitive deionization, Desalination, 326 (2013) 109–114.
  26. G.L. Sun, H.Y. Xie, J.B. Ran, L.Y. Ma, X.Y. Shen, J.M. Hu, H. Tong, Rational design of uniformly embedded metal oxide nanoparticles into nitrogen-doped carbon aerogel for highperformance asymmetric supercapacitors with a high operating voltage window, J. Mater. Chem. A, 4 (2016) 16576–16587.
  27. X.L. Li, R.W. Tang, K. Hu, L.Y. Zhang, Z.Q. Ding, Hierarchical porous carbon aerogels with VN modification as cathode matrix for high performance lithium-sulfur batteries, Electrochim. Acta, 210 (2016) 734–742.
  28. T.F. Baumann, M.A. Worsley, T.Y.-J. Han, J.H. Satcher Jr., High surface area carbon aerogel monoliths with hierarchical porosity, J. Non-Cryst. Solids, 354 (2008) 3513–3515.
  29. R. Kumar, S. Sen Gupta, S. Katiyar, V.K. Raman, S.K. Varigala, T. Pradeep, A. Sharma, Carbon aerogels through organoinorganic co-assembly and their application in water desalination by capacitive deionization, Carbon, 99 (2016) 375–383.
  30. C.-L. Yeh, H.-C. Hsi, K.-C. Li, C.-H. Hou, Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio, Desalination, 367 (2015) 60–68.
  31. K.B. Hatzell, M. Beidaghi, J.W. Campos, C.R. Dennison, E.C. Kumbur, Y. Gogotsi, A high performance pseudocapacitive suspension electrode for the electrochemical flow capacitor, Electrochim. Acta, 111 (2013) 888–897.
  32. Y.L. Xu, M.F. Yan, S.S. Wang, L.H. Zhang, H.H. Liu, Z.F. Liu, Synthesis, characterization and electrochemical properties of carbon aerogels using different organic acids as polymerization catalysts, J. Porous Mater., 24 (2017) 1375–1381.
  33. M.-W. Ryoo, J.-H. Kim, G. Seo, Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution, J. Colloid Interface Sci., 264 (2003) 414–419.
  34. X.P. Quan, Z.B. Fu, L. Yuan, M.L. Zhong, R. Mi, X. Yang, Y. Yi, C.Y. Wang, Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes, RSC Adv., 7 (2017) 35875–35882.
  35. Z. Wang, B.J. Dou, L. Zheng, G. Zhang, Z.H. Liu, Z.P. Hao, Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material, Desalination, 299 (2012) 96–102.
  36. C.M. Wang, H. Song, Q.X. Zhang, B.J. Wang, A.M. Li, Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration, Desalination, 365 (2015) 407–415.
  37. H.L. Zhang, P. Liang, Y.H. Bian, Y. Jiang, X.L. Sun, C.Y. Zhang, X. Huang, F. Wei, Moderately oxidized graphene–carbon nanotubes hybrid for high performance capacitive deionization, RSC Adv., 6 (2016) 58907–58915.