1. E. Olkowska, B. Kudłak, S. Tsakovski, M. Ruman, V. Simeonov, Z. Polkowska, Assessment of the water quality of Kłodnica River catchment using self-organizing maps, Sci. Total Environ., 476–477 (2014) 477–484.
  2. V. Masindi, K.L. Muedi, Environmental Contamination by Heavy Metals, H. Saleh, R. Aglan, Eds., Heavy Metals, Intech Open, 2018, pp. 115–133. Available at:
  3. M. Kostecki, M. Czaplicka, A. Węglarz, Organic compounds (BTEXs, PAHs) in the battom sediments of dam-reservouir Dzierżno Duże (Upper Silesia), Arch. Environ. Prot., 26 (2000) 95–108.
  4. M. Kostecki, M. Czaplicka, Polycyclic aromatic hydrocarbons as part of contamination of sediments Gliwice Canal, Arch. Environ. Prot., 3 (2001) 119–135.
  5. M. Olenycz, A. Sokołowski, A. Niewińska, M. Wołowicz, J. Namieśnik, H. Hummel, J. Jansen, Comparison of PCBs and PAHs levels in European coastal waters using mussels from the Mytilus edulis complex as biomonitors, Oceanologia, 57 (2015) 196–211.
  6. M. Moslen, C.A. Miebaka, N. Boisa, Bioaccumulation of polycyclic aromatic hydrocarbon (PAH) in a bivalve (Arca senilis – blood cockles) and health risk assessment, Toxicol. Rep., 6 (2019) 990–997.
  7. J. Sanchez, M. Sole, J. Albaiges, A comparison of distribution of PCB congeners and other chlorinated compounds in fishes from coastal areas and remote lakes, Int. J. Environ. Anal. Chem., 50 (1993) 269–284.
  8. M. Andersson, R.T. Ottsen, T. Volden, Building materials as source of PCB pollution in Bergen, Norway, Sci. Total Environ., 325 (2004) 139–144.
  9. M. Rodziewicz, A. Kaczmarczyk, E. Niemirycz, Polychlorinated biphenyls in the sediments of the Odra River and its tributaries, Pol. J. Environ. Stud., 13 (2004) 203–208.
  10. J.P. Giesy, J.C. Anderson, S.B. Wiseman, Alberta oil sands development, Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 951–952.
  11. C.A. Menzie, B.B. Potocki, J. Santodonato, Exposure to carcinogenic PAHs in the environment, Environ. Sci. Technol., 26 (1992) 1278–1284.
  12. P. Bigus, M. Tobiszewski, J. Namieśnik, Historical records of organic pollutants in sediment cores, Mar. Pollut. Bull., 78 (2014) 26–42.
  13. M. Mostert, G. Ayoko, S. Kokot, Application of chemometrics to analysis of soil pollutants, Trends Analyt. Chem., 29 (2010) 430–435.
  14. M. Tobiszewski, J. Namieśnik, PAH diagnostic ratios for the identification of pollution emission sources, Environ. Pollut., 162 (2012) 110–119.
  15. J. Balmer, H. Hung, Y. Yu, R. Letcher, D. Muir, Sources and environmental fate of pyrogenic polycyclic aromatic hydrocarbons (PAHs) in the Arctic, Emerg. Contam., 5 (2019) 128–142.
  16. C. Brewster, V. Sharma, L. Cizmas, T. McDonald, Occurrence, distribution and composition of aliphatic and polycyclic aromatic hydrocarbons in sediment cores from the Lower Fox River, Wisconsin, US, Environ. Sci. Pollut. Res., 25 (2018) 4974–4988.
  17. Available at: &oq=Zabrze+population&gs_l=psy-ab.3..0i19.29248.29248..3 0079...0.2.. ved=0ahUKEwjY2eqoq-znAhULyaQKHdgVB90Q4dUD CAo&uact=5 (accessed February 25, 2020).
  18. Report on the Implementation of the National Program for Urban Wastewater Treatment, Poland, 2015.
  19. E. Cempiel, A. Czajkowska, K. Nowińska, M. Pozzi, Manifestations of Anthropopressure in the Bytomka River Catchment Area, Silesian University of Technology Publisher, Gliwice, 2014.
  20. D. Absalon, M. Matysik, In: L. Hejduk, E. Kaznowksa, Hydrology of Urbanized Catchments, Monographs of the Water Management Committee of the Polish Academy of Sciences, 2016, pp. 175–185.
  21. A. Pohl, M. Kostecki, I. Jureczko, M. Czaplicka, B. Łozowski, Polycyclic aromatic hydrocarbons in water and bottom sediments of a shallow, lowland dammed reservoir (on the example of the reservoir Blachownia, South Poland), Arch. Environ. Prot., 44 (2018) 10–23.
  22. P. Konieczka, J. Namieśnik, Estimating uncertainty in analytical procedures based on chromatographic techniques, J. Chromatogr. A, 1217 (2010) 882–891.
  23. M. Jabłońska-Czapla, S. Szopa, C. Rosik-Dulewska, Impact of mining dump on the accumulation and mobility of metals in the Bytomka River sediments, Arch. Environ. Prot., 40 (2014) 3–19.
  24. P. Kuna-Gwoździewicz, Polycyclic aromatic hydrocarbons in the gases of exhalation zones of a thermally selected active landfill for mining coal, J. Sustainable Min., 12 (2013) 7–12.
  25. M. Włodarczyk-Makuła, E. Wiśniowska, Evaluation of degradation possibility of PAHs by miroorganisms obtained from reject waters, Proc. ECOpole, 12 (2018) 599–610.
  26. S. Debela, I. Sheriffa, J. Wu, Q. Hua, Y. Zhang, A. Dibaba, Occurrences, distribution of PCBs in urban soil and management of old transformers dumpsite in Addis Ababa, Ethiopia, Sci. Afr., 8 (2020), doi: 10.1016/j.sciaf.2020.e00329.
  27. Y. He, W. Meng, J. Xu, Y. Zhang, C. Guo, Spatial distribution and potential toxicity of polycyclic aromatic hydrocarbons in sediments from Liaohe River Basin, China, Environ. Monit. Assess., 188 (2016) 1–10.
  28. D.D. MacDonald, C.G. Ingersoll, T.A. Berger, Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems, Arch. Environ. Contam. Toxicol., 39 (2000) 20−31.
  29. T. Solberg, J. Tiefenthaler Jr., G. O’Brien, H.F. Behnke, H.D. Poulson, J.P. Ela, S.D. Willett, Consensus-Based Sediment Quality Guidelines, Recommendations for Use & Application Interim Guidance, Developed by the Contaminated Sediment Standing Team, Wisconsin Department of Natural Resources, USA, 2003.
  30. F. Liu, J. Liua, Q. Chena, B. Wanga, Z. Caob, Pollution characteristics, ecological risk and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediment from Tuhai- Majia River system, China, Procedia Environ. Sci., 13 (2012) 1301–1314.
  31. X. Duan, Y. Li, X. Li, P. Yin, Historical records and the sources of polycyclic aromatic hydrocarbons in the East China Sea, China Geol., 4 (2018) 505−511.