References

  1. CONAGUA, Estadísticas del agua en México, Comisión Nacional del Agua, Mexico City, 2018.
  2. UN, Managing Water under Uncertainty and Risk: The United Nations World Water Development Report 4, UNESCO, Paris, 2012.
  3. CANACINTRA, Del. Ensenada, Compendio foro de agua Ensenada, BC: problemáticas y soluciones, Cámara Nacional de la Industria de Transformación, Delegación Ensenada, Ensenada, 2014.
  4. CICESE, Agua en Ensenada: más barato, pero persiste la escasez, 2018. Available at: https://centrosconacyt.mx/objeto/ agua-en-ensenada/
  5. Proyectos México, Diseño, construcción, equipamiento, operación, mantenimiento y conservación de una planta desaladora en Ensenada, Baja California, 2020. Available at: https://www.proyectosmexico.gob.mx/proyecto_inversion/ 0839-planta-desaladora-de-ensenada/
  6. Comisión Estatal del Agua de Baja California, Desaladoras del municipio de Ensenada, 2013. Available at: http://www.spabc. gob.mx/wp-content/uploads/2016/08/Desaladoras-Ensenada. pdf
  7. FCEA, Agua en México: un prontuario para la correcta toma de decisiones, Fondo para la Comunicación y Educación Ambiental A.C., Mexico City, 2017.
  8. D. Zarzo, D. Prats, Desalination and energy consumption. What can we expect in the near future?, Desalination, 427 (2018) 1–9.
  9. The World Bank, Solar Resource Data: Solargis, 2017. Available at: https://solargis.com/es/maps-and-gis-data/download/ mexico
  10. A. Pugsley, A. Zacharopoulos, J.D. Mondol, M. Smyth, Global applicability of solar desalination, Renewable Energy, 88 (2016) 200–219.
  11. A. Bermudez-Contreras, M. Thomson, D.G. Infield, Renewable energy powered desalination in Baja California Sur, Mexico, Desalination, 220 (2008) 431–440.
  12. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  13. H. Nassrullah, S.F. Anis, R. Hashaikeh, N. Hilal, Energy for desalination: a state of the art review, Desalination, 491 (2020) 114569.
  14. A.A. El-Sebaii, E. El-Bialy, Advanced designs of solar desalination systems: a review, Renewable Sustainable Energy Rev., 49 (2015) 1198–1212.
  15. A. Muthu Manokar, D. Prince Winston, R. Sathyamurthy, A.E. Kabeel, A. Rama Prasath, Experimental investigation on pyramid solar still in passive and active mode, Heat Mass Transf., (2018), https://doi.org/10.1007/s00231-018-2483-3.
  16. T. Arunkumar, K. Raj, D. Dsilva Winfred Rufuss, D. Denkenberger, G. Tingting, L. Xuan, R. Velraj, A review of efficient high productivity solar stills, Renewable Sustainable Energy Rev., 101 (2019) 197–220.
  17. T. Elango, K. Kalidasa Murugavel, The effect of the water depth on the productivity for single and double basin double slope glass solar stills, Desalination, 359 (2015) 82–91.
  18. M. Feilizadeh, M.R. Karimi Estahbanati, A. Ahsan, K. Jafarpur, A. Mersaghian, Effects of water and basin depths in single basin solar stills: an experimental and theoretical study, Energy Convers. Manage., 122 (2016) 174–181.
  19. Y. Taamneh, M.M. Taamneh, Performance of pyramid-shaped solar still: experimental study, Desalination, 291 (2012) 65–68.
  20. A.E. Kabeel, Z.M. Omara, F.A. Essa, Enhancement of modified solar still integrated with external condenser using nanofluids: an experimental approach, Energy Convers. Manage., 78 (2014) 493–498.
  21. J. Madiouli, A. Lashin, I. Shigidi, I.A. Badruddin, A. Kessentini, Experimental study and evaluation of single slope solar still combined with flat plate collector, parabolic trough and packed bed, Sol. Energy, 196 (2020) 358–366.
  22. O.O. Badran, H.A. Al-Tahaineh, The effect of coupling a flatplate collector on the solar still productivity, Desalination, 183 (2005) 137–142.
  23. A.A. Badran, I.A. Al-Hallaq, I.A. Eyal Salman, M.Z. Odat, A solar still augmented with a flat-plate collector, Desalination, 172 (2005) 227–234.
  24. A.E. Kabeel, M. Abdelgaied, G.M. Mahmoud, Performance evaluation of continuous solar still water desalination system, J. Therm. Anal. Calorim., (2020), https://doi.org/10.1007/ s10973-020-09547-5
  25. A.R.A. Elbar, H. Hassan, Enhancement of hybrid solar desalination system composed of solar panel and solar still by using porous material and saline water preheating, Sol. Energy., 204 (2020) 382–394.
  26. M. Nasrollahzadeh, S.M. Sajadi, Risks of Nanotechnology to Human Life, M. Nasrollahzadeh, S.M. Sajadi, M. Sajjadi, Z. Issaabadi, M. Atarod, Eds., An Introduction to Green Nanotechnology, Elsevier, 2019, pp. 323–336.
  27. M. Parashar, V.K. Shukla, R. Singh, Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications, J. Mater. Sci. Mater. Electron., 31 (2020) 3729–3749.
  28. A.H. Elsheikh, S.W. Sharshir, M.E. Mostafa, F.A. Essa, M.K. Ahmed Ali, Applications of nanofluids in solar energy: a review of recent advances, Renewable Sustainable Energy Rev., 82 (2018) 3483–3502.
  29. K. Khanafer, K. Vafai, A review on the applications of nanofluids in solar energy field, Renewable Energy, 123 (2018) 398–406.
  30. S. Rashidi, N. Karimi, O. Mahian, J.A. Esfahani, A concise review on the role of nanoparticles upon the productivity of solar desalination systems, J. Therm. Anal. Calorim., 135 (2019) 1145–1159.
  31. M. Seyednezhad, M. Sheikholeslami, J.A. Ali, A. Shafee, T.K. Nguyen, Nanoparticles for water desalination in solar heat exchanger, J. Therm. Anal. Calorim., 139 (2020) 1619–1636.
  32. T. Elango, A. Kannan, K. Kalidasa Murugavel, Performance study on single basin single slope solar still with different water nanofluids, Desalination, 360 (2015) 45–51.
  33. L. Sahota, G.N. Tiwari, Exergoeconomic and enviroeconomic analyses of hybrid double slope solar still loaded with nanofluids, Energy Convers. Manage., 148 (2017) 413–430.
  34. A.E. Kabeel, Z.M. Omara, F.A. Essa, A.S. Abdullah, T. Arunkumar, R. Sathyamurthy, Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles, Alexandria Eng. J., 56 (2017) 433–438.
  35. A.E. Kabeel, R. Sathyamurthy, S.W. Sharshir, A. Muthumanokar, H. Panchal, N. Prakash, C. Prasad, S. Nandakumar, M.S. El Kady, Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO2 nano black paint, J. Cleaner Prod., 213 (2019) 185–191.
  36. S.W. Sharshir, G. Peng, L. Wu, F.A. Essa, A.E. Kabeel, N. Yang, The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance, Appl. Energy, 191 (2017) 358–366.
  37. G.B. Balachandran, P.W. David, R.K. Mariappan, M.M. Athikesavan, R. Sathyamurthy, Improvising the efficiency of single-sloped solar still using thermally conductive nano-ferric oxide, Environ. Sci. Pollut. Res., 27 (2020) 32191–32204.
  38. M.E. Zayed, J. Zhao, Y. Du, A.E. Kabeel, S.M. Shalaby, Factors affecting the thermal performance of the flat plate solar collector using nanofluids: a review, Sol. Energy, 182 (2019) 382–396.
  39. S. Chávez, H. Terres, A. Lizardi, R. López, A. Lara, Heat transfer intern coefficient determination in the process of solar still, J. Phys. Conf. Ser., 1221 (2019) 12032.
  40. G. Tiwari, Solar Energy: Fundamentals, Design, Modeling and Applications, Narosa Publishing House, New Delhi, 2004.
  41. R.V. Dunkle, Solar water distillation: the roof type still and a multiple effect diffusion still, Proc. ASME Int. Heat Transf. Part 5, Boulder, 5 (1961) 895–902.
  42. A.E. Kabeel, Z.M. Omara, F.A. Essa, Numerical investigation of modified solar still using nanofluids and external condenser, J. Taiwan Inst. Chem. Eng., 75 (2017) 77–86.
  43. J. Fernández, N. Chargoy, Multi-stage, indirectly heated solar still, Sol. Energy, 44 (1990) 215–223.
  44. A.E. Kabeel, M. Abdelgaied, N. Almulla, Performances of Pyramid-Shaped Solar Still with Different Glass Cover Angles: Proceedings of the 7th International Renewable Energy Congress (IREC), IEEE, Hammamet, 2016, pp. 1–6.
  45. R.W. Miller, Flow Measurement Engineering Handbook, 3rd ed., McGraw-Hill, New York, 1996, pp. 4.1–4.24.
  46. A.E. Kabeel, M. Abdelgaied, A. Eisa, Effect of graphite mass concentrations in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performances of solar still, Renewable Energy, 132 (2019) 119–128.
  47. K. Nayar, M.H. Sharqawy, L.D. Banchik, J.H. Lienhard V, Thermophysical properties of seawater: a review and new correlations that include pressure dependence, Desalination, 390 (2016) 1–24.
  48. H.S. Mostafa, H. John, V. Lienhard, M.Z. Syed, Thermophysical properties of seawater: a review of existing correlations and data, Desal. Water Treat., 16 (2010) 354–380.
  49. H.T. El-Dessouky, H.M. Ettouney, Fundamentals of Salt Water Desalination, Elsevier Science, Amsterdan, 2002.
  50. J.R. Taylor, An Introduction to Error Analysis, 2nd ed., University Science Books, USA, 1997.
  51. S. Stankic, S. Suman, F. Haque, J. Vidic, Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties, J. Nanobiotechnol., 14 (2016) 73.
  52. S. Gupta, S. Bag, K. Ganguly, I. Sarkar, P. Biswas, Advancements of Medical Electronics, Proceedings of the First International Conference, ICAME 2015, Springer, New Delhi, India, 2015, pp. 193–206.
  53. E. Denes, G. Barrière, E. Poli, G. Lévêque, Alumina biocompatibility, J. Long-Term. Eff. Med. Implants, 28 (2018) 9–13.
  54. A. Sliwinska, D. Kwiatkowski, P. Czarny, J. Milczarek, M. Toma, A. Korycinska, J. Szemraj, T. Sliwinski, Genotoxicity and cytotoxicity of ZnO and Al2O3 nanoparticles, Toxicol. Mech. Methods, 25 (2015) 176–183.
  55. E. Baranowska-Wójcik, D. Szwajgier, P. Oleszczuk, A. Winiarska- Mieczan, Effects of titanium dioxide nanoparticles exposure on human health—a review, Biol. Trace Elem. Res., 193 (2020) 118–129.
  56. V. Dincă, A. Mocanu, G. Isopencu, C. Busuioc, S. Brajnicov, A. Vlad, M. Icriverzi, A. Roseanu, M. Dinescu, M. Stroescu, A. Stoica-Guzun, M. Suchea, Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties, Arab. J. Chem., 13 (2020) 3521–3533.
  57. A.N.P. Madathil, K.A. Vanaja, M.K. Jayaraj, Synthesis of ZnO Nanoparticles by Hydrothermal Method, Proc. SPIE, Vol. 6639, Nanophotonic Materials IV, San Diego, 2007, pp. 66390J.
  58. M. Abdullah, M. Mehmood, J. Ahmad, Single step hydrothermal synthesis of 3D urchin like structures of AACH and aluminum oxide with thin nano-spikes, Ceram. Int., 38 (2012) 3741–3745.
  59. J.A. Darr, J. Zhang, N.M. Makwana, X. Weng, Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions, Chem. Rev., 117 (2017) 11125–11238.
  60. T. Song, Q. Liu, J. Liu, W. Yang, R. Chen, X. Jing, K. Takahashi, J. Wang, Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property, Appl. Surf. Sci., 355 (2015) 495–501.
  61. J.S. Lee, H.S. Kim, N.K. Park, T.J. Lee, M. Kang, Low temperature synthesis of α-alumina from aluminum hydroxide hydrothermally synthesized using [Al(C2O4)x(OH)y] complexes, Chem. Eng. J., 230 (2013) 351–360.
  62. N.R. Panda, B.S. Acharya, Impurity induced crystallinity and optical emissions in ZnO nanorod arrays, Mater. Res. Express, 2 (2014) 15011.
  63. P.T. Hsieh, Y.C. Chen, K.S. Kao, C.M. Wang, Luminescence mechanism of ZnO thin film investigated by XPS measurement, Appl. Phys. A, 90 (2008) 317–321.
  64. G.M. Ingo, S. Dirè, F. Babonneau, XPS studies of SiO2-TiO2 powders prepared by sol-gel process, Appl. Surf. Sci., 70–71 (1993) 230–234.
  65. B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, M.S. El-Aasser, XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation, Langmuir, 17 (2001) 2664–2669.
  66. A.V. Vorontsov, A.A. Altynnikov, E.N. Savinov, E.N. Kurkin, Correlation of TiO2 photocatalytic activity and diffuse reflectance spectra, J. Photochem. Photobiol. A, 144 (2001) 193–196.
  67. R. Dhanalakshmi, A. Pandikumar, K. Sujatha, P. Gunasekaran, Photocatalytic and antimicrobial activities of functionalized silicate sol–gel embedded ZnO–TiO2 nanocomposite materials, Mater. Express., 3 (2013) 291–300.
  68. M.R. Parra, F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles, J. Mater. Res. Technol., 3 (2014) 363–369.
  69. P. Nayar, A. Khanna, D. Kabiraj, S.R. Abhilash, B.D. Beake, Y. Losset, B. Chen, Structural, optical and mechanical properties of amorphous and crystalline alumina thin films, Thin Solid Films, 568 (2014) 19–24.
  70. M.H. Sajid, Z. Said, R. Saidur, M.F. Mohd Sabri, Applicability of alumina nanofluid in direct absorption solar collectors, Appl. Mech. Mater., 699 (2015) 366–371.
  71. J. El-Nady, A.B. Kashyout, S. Ebrahim, M.B. Soliman, Nanoparticles Ni electroplating and black paint for solar collector applications, Alexandria Eng. J., 55 (2016) 723–729.
  72. T. Arunkumar, K. Raj, D. Denkenberger, R. Velraj, Heat carrier nanofluids in solar still–a review, Desal. Water Treat., 130 (2018) 1–16.
  73. A.E. Kabeel, A.M. Hamed, S.A. El-Agouz, Cost analysis of different solar still configurations, Energy, 35 (2010) 2901–2908.