1. Y.H. Chiu, T.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts, Catalysts, 9 (2019) 430, doi: 10.3390/catal9050430.
  2. M. Siegrist, M.E. Cousin, H. Kastenholz, A. Wiek, Public acceptance of nanotechnology foods and food packaging: the influence of affect and trust, Appetite, 49 (2007) 459–466.
  3. A. Al Nafiey, A. Addad, B. Sieber, G. Chastanet, A. Barras, S. Szunerits, R. Boukherroub, Reduced graphene oxide decorated with Co3O4 nanoparticles (rGO-Co3O4) nanocomposite: a reusable catalyst for highly efficient reduction of 4-nitrophenol, and Cr(VI) and dye removal from aqueous solutions, Chem. Eng. J., 322 (2017) 375–384.
  4. W.W. Anku, S.O. Oppong, P.P. Govender, Bismuth-Based Nanoparticles as Photocatalytic Materials, Y. Zhou, F. Dong, S. Jin, Eds., Bismuth – Advanced Applications and Defects Characterization, IntechOpen, 2018, p. 25. Available at: and-defects-characterization/bismuth-basednanoparticles- as-photocatalytic-materials
  5. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114 (2014) 9919–9986.
  6. K. Chakraborty, S. Ibrahim, P. Das, S. Ghosh, T. Pal, Reduced graphene oxide-CdS nanocomposite with enhanced photocatalytic 4-nitrophenol degradation, AIP Conf. Proc., 1832 (2017) 050077, doi: 10.1063/1.4980310.
  7. R. Saravanan, F. Gracia, A. Stephen, Basic Principles, Mechanism, and Challenges of Photocatalysis, M.M. Khan, D. Pradhan, Y. Sohn, Eds., Nanocomposites for Visible Light-Induced Photocatalysis, Springer, Cham, 2017, pp. 19–40.
  8. S.A. Mousavi, M. Hassanpour, M. Salavati-Niasari, H. Safardoust-Hojaghana, M. Hamadanian, Dy2O3/CuO nanocomposites: microwave assisted synthesis and investigated photocatalytic properties, J. Mater. Sci. - Mater. Electron., 29 (2018) 1238–1245.
  9. A.H. Al-Marri, M. Khan, S.F. Adil, A. Al-Warthan, W. Tremel, J.P. Labis, M.R.H. Siddiqui, M.N. Tahir, Pulicaria glutinosa extract: a toolbox to synthesize highly reduced graphene oxide-silver nanocomposites, Int. J. Mol. Sci., 16 (2015) 1131–1142.
  10. H. Kumar, K. Bhardwaj, K. Kuca, A. Kalia, E. Nepovimova, R. Verma, D. Kumar, Flower-based green synthesis of metallic nanoparticles: applications beyond fragrance, Nanomaterials, 10 (2020) 766, doi: 10.3390/nano10040766.
  11. S. Joseph, B. Mathew, Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata, Spectrochim. Acta, Part A, 136 (2015) 1371–1379.
  12. B. Zhang, L. Li, Z. Wang, S. Xie, Y. Zhang, Y. Shen, M. Yu, B. Deng, Q. Huang, C. Fan, Microwave hydrothermal synthesis and photocatalytic properties of TiO2/BiVO4 composite photocatalysts, Ceram. Int., 39 (2013) 8597–8604.
  13. H. Safardoust-Hojaghana, O. Amirib, M. Salavati-Niasaria, M. Hassanpoura, H. Khojastehc, L.K. Foongd, Performance improvement of dye sensitized solar cells based oncadmium sulfide/S, N co doped carbon dots nanocomposites, J. Mol. Liq., 301 (2020) 112413, doi: 10.1016/j.molliq.2019.112413.
  14. S. Ghasemia, S.J. Hashemiana, A.A. Alamolhoda, I. Gocheva, S.R. Setayesh, Plasmon enhanced photocatalytic activity of Au@TiO2-graphene nanocomposite under visible light for degradation of pollutants, Mater. Res. Bull., 87 (2017) 40–47.
  15. F. Tavakoli, M. Salavati-Niasari, F. Mohandes, Green synthesis and characterization of graphene nanosheets, Mater. Res. Bull., 63 (2015) 51–57.
  16. M. Mahdiani, F. Soofivand, F. Ansari, M. Salavati-Niasari, Grafting of CuFe12O19 nanoparticles on CNT and graphene: ecofriendly synthesis, characterization and photocatalytic activity, J. Cleaner Prod., 176 (2018) 1185–1197.
  17. H. Safardoust-Hojaghan, M. Salavati-Niasari, Degradation of Methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite, J. Cleaner Prod., 148 (2017) 31–36.
  18. M. Suresh, A. Sivasamy, Bismuth oxide nanoparticles decorated Graphene layers for the degradation of Methylene blue dye under visible light irradiations and antimicrobial activities, J. Environ. Chem. Eng., 6 (2018) 3745–3756.
  19. T.R. Das, S. Patra, R. Madhuri, P.K. Sharma, Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes, J. Colloid Interface Sci., 509 (2018) 82–93.
  20. S. Zhong, F. Zhang, W. Lu, T. Wang, L. Qua, One-step synthesis of Bi2WO6/Bi2O3 loaded reduced graphene oxide multicomponent composite with enhanced visible-light photocatalytic activity, RSC Adv., 5 (2015) 68646–68654.
  21. R. Rajagopal, R. Krishnan, A. Ramasubbu, B.A. Kamaludeen, Synthesis of Bi2WO6-RGO Nanocomposite for Photocatalytic Application, 2015 International Conference on Smart Sensors and Systems (IC-SSS), Bangalore, 2015.
  22. X. Chen, J. Dai, G. Shi, L. Li, G. Wang, H. Yang, Visible light photocatalytic degradation of dyes by β-Bi2O3/graphene nanocomposites, J. Alloys Compd., 649 (2015) 872–877.
  23. M. Du, S. Xiong, T. Wu, D. Zhao, Q. Zhang, Z. Fan, Y. Zeng, F. Ji, Q. He, X. Xu, Preparation of a microspherical silver-reduced graphene oxide-bismuth vanadate composite and evaluation of its photocatalytic activity, Materials, 9 (2016) 160, doi: 10.3390/ ma9030160.
  24. S. Mussadiq, N. Riaz, M. Saleem, M. Ashraf, T. Ismail, A. Jabbar, New acylated flavonoid glycosides from flowers of Aerva javanica, J. Asian Nat. Prod. Res., 15 (2013) 708–716.
  25. S. Musaddiq, K. Mustafa, S. Ahmad, S. Aslam, B. Ali, S. Khakwani, N. Riaz, M. Saleem, A. Jabbar, Pharmaceutical, ethnopharmacological, phytochemical and synthetic importance of genus Aerva: a review, Nat. Prod. Commun., 13 (2018) 375–385.
  26. J. Hummers, S.O. William, E. Richard, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339–1339.
  27. I. Ali, J.O. Kim, Continuous-flow photocatalytic degradation of organics using modified TiO2 nanocomposites, Catalysts, 8 (2018) 43, doi: 10.3390/catal8020043.
  28. B. Zhang, L. Li, Z. Wang, S. Xie, Y. Zhang, Y. Shen, M. Yu, B. Deng, Q. Huang, C. Fana, J. Li, Radiation induced reduction: an effective and clean route to synthesize functionalized graphene, J. Mater. Chem., 22 (2012) 7775–7781.
  29. K. Chen, L. Fang, T. Zhang, S.P. Jiang, New zinc and bismuth doped glass sealants with substantially suppressed boron deposition and poisoning for solid oxide fuel cells, J. Mater. Chem. A, 2 (2014) 18655–18665.
  30. M. Ciszewski, A. Mianowski, P. Szatkowski, G. Nawrat, J. Adamek, Reduced graphene oxide–bismuth oxide composite as electrode material for supercapacitors, Ionics, 21 (2015) 557–563.
  31. X. Liu, L. Pan, T. Lv, Z. Sun, C.Q. Sun, Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method, J. Colloid Interface Sci., 408 (2013) 145–150.