1. E. Szatyłowicz, I. Skoczko, Magnetic field usage supported filtration through different filter materials, Water, 11 (2019) 1584, doi: 10.3390/w11081584.
  2. T. Hayat, M. Rashid, M.I. Khan, A. Alsaedi, Melting heat transfer and induced magnetic field effects on flow of water based nanofluid over a rotating disk with variable thickness, Results Phys., 9 (2018) 1618–1630.
  3. A. Hatamie, H. Parham, B. Zargar, Z. Heidari, Evaluating magnetic nano-ferrofluid as a novel coagulant for surface water treatment, J. Mol. Liq., 219 (2016) 694–702.
  4. O. Carrier, N. Shahidzadeh-Bonn, R. Zargar, M. Aytouna, M. Habibi, J. Eggers, D. Bonn, Evaporation of water: evaporation rate and collective effects, J. Fluid Mech., 798 (2016) 774–786.
  5. D. Rish, S.R. Luo, B. Kurtz, T.F. Luo, Exceptional ion rejection ability of directional solvent for non-membrane desalination, Appl. Phys. Lett., 104 (2014) 024102, doi: 10.1063/1.4861835.
  6. M. Sammer, C. Kamp, A. Paulitsch-Fuchs, A. Wexler, C. Buisman, E. Fuchs, Strong gradients in weak magnetic fields induce DOLLOP formation in tap water, Water, 8 (2016) 79, doi: 10.3390/w8030079.
  7. A.A.A.A. Al-Rashed, K. Kalidasan, L. Kolsi, A. Aydi, E.H. Malekshah, A.K. Hussein, P. Rajesh Kanna, Threedimensional investigation of the effects of external magnetic field inclination on laminar natural convection heat transfer in CNT–water nanofluid filled cavity, J. Mol. Liq., 252 (2018) 454–468.
  8. A.R. Al-Badri, A.A.Y. Al-Waaly, The influence of chilled water on the performance of direct evaporative cooling, Energy Build., 155 (2017) 143–150.
  9. K. Hisatake, S. Tanaka, Y. Aizawa, Evaporation rate of water in a vessel, J. Appl. Phys., 73 (1993) 7395–7401.
  10. T. Kokalj, H. Cho, M. Jenko, L.P. Lee, Biologically inspired porous cooling membrane using arrayed-droplets evaporation, Appl. Phys. Lett., 96 (2010) 163703, doi: 10.1063/1.3332398.
  11. Z. Huang, X.Y. Li, H. Yuan, Y.H. Feng, X.X. Zhang, Hydrophobically modified nanoparticle suspensions to enhance water evaporation rate, Appl. Phys. Lett., 109 (2016) 161602, doi: 10.1063/1.4964830.
  12. E. Esmaeilnezhad, H.J. Choi, M. Schaffie, M. Gholizadeh, M. Ranjbar, Characteristics and applications of magnetized water as a green technology, J. Cleaner Prod., 161 (2017) 908–921.
  13. L.L. Jiang, X.Y. Yao, H.T. Yu, X.G. Hou, Z.S. Zou, F.M. Shen, C.T. Li, Effect of permanent magnetic field on water association in circulating water, Desal. Water Treat., 79 (2017) 152–160.
  14. L.L. Jiang, J.L. Zhang, D.K. Li, Effects of permanent magnetic field on calcium carbonate scaling of circulating water, Desal. Water Treat., 53 (2015) 1275–1285.
  15. L. Holysz, A. Szczes, E. Chibowski, Effects of a static magnetic field on water and electrolyte solutions, J. Colloid Interface Sci., 316 (2007) 996–1002.
  16. Y.Z. Guo, D.C. Yin, H.L. Cao, J.Y. Shi, C.Y. Zhang, Y.M. Liu, H.H. Huang, Y. Liu, Y. Wang, W.H. Guo, A.R. Qian, P. Shang, Evaporation rate of water as a function of a magnetic field and field gradient, Int. J. Mol. Sci., 13 (2012) 16916–16928.
  17. A. Seyfi, R. Afzalzadeh, A. Hajnorouzi, Increase in water evaporation rate with increase in static magnetic field perpendicular to water-air interface, Chem. Eng. Process., 120 (2017) 195–200.
  18. E. Chibowski, A. Szczes, Magnetic water treatment-a review of the latest approaches, Chemosphere, 203 (2018) 54–67.
  19. H. Zhao, F. Zhang, H. Hu, S. Liu, J. Han, Experimental study on freezing of liquids under static magnetic field, Chin. J. Chem. Eng., 25 (2017) 1288–1293.
  20. W.W. Zhang, L.Q. Li, G.Y. Zhang, S.C. Zhang, Interfacial structure and wetting behavior of water droplets on graphene under a static magnetic field, J. Mol. Liq., 269 (2018) 187–192.
  21. S.H. Lee, S.I. Jeon, Y.S. Kim, S.K. Lee, Changes in the electrical conductivity, infrared absorption, and surface tension of partially-degassed and magnetically-treated water, J. Mol. Liq., 187 (2013) 230–237.
  22. B. Mahmoud, M. Yosra, A. Nadia, Effects of magnetic treatment on scaling power of hard waters, Sep. Purif. Technol., 171 (2016) 88–92.
  23. H. Wei, Y. Wang, J. Luo, Influence of magnetic water on earlyage shrinkage cracking of concrete, Constr. Build. Mater., 147 (2017) 91–100.
  24. S.L.F. Lopez, M.R.M. Virgen, V.H. Montoya, M.A.M. Moran, R.T. Gomez, N.A.R. Vazquez, M.A.P. Cruz, M.S.E. Gonzalez, Effect of an external magnetic field applied in batch adsorption systems: removal of dyes and heavy metals in binary solutions, J. Mol. Liq., 269 (2018) 450–460.
  25. B. Liu, B. Gao, X. Xu, W. Hong, Q. Yue, Y. Wang, Y. Su, The combined use of magnetic field and iron-based complex in advanced treatment of pulp and paper wastewater, Chem. Eng. J., 178 (2011) 232–238.
  26. Y. Wang, H. Wei, Z. Li, Effect of magnetic field on the physical properties of water, Results Phys., 8 (2018) 262–267.
  27. L.L. Jiang, X.Y. Yao, H.T. Yu, X.G. Hou, Z.S. Zou, F.M. Shen, C.T. Li, Effect of permanent magnetic field on scale inhibition property of circulating water, Water Sci. Technol., 76 (2017) 1981–1991.
  28. A. Szcześ, E. Chibowski, L. Hołysz, P. Rafalski, Effects of static magnetic field on water at kinetic condition, Chem. Eng. Process., 50 (2011) 124–127.
  29. J. Sohaili, H.S. Shi, B. Lavania, N.H. Zardari, N. Ahmad, S.K. Muniyandi, Removal of scale deposition on pipe walls by using magnetic field treatment and the effects of magnetic strength, J. Cleaner Prod., 139 (2016) 1393–1399.
  30. R. Cai, H. Yang, J. He, W. Zhu, The effects of magnetic fields on water molecular hydrogen bonds, J. Mol. Struct., 938 (2009) 15–19.
  31. L. Otero, A.C. Rodríguez, M. Pérez-Mateos, P.D. Sanz, Effects of magnetic fields on freezing: application to biological products, Compr. Rev. Food. Sci. Food Saf., 15 (2016) 646–667.
  32. F. Alimi, A. Boubakri, M.M. Tlili, M. Ben Amor, A comprehensive factorial design study of variables affecting CaCO3 scaling under magnetic water treatment, Water Sci. Technol., 70 (2014) 1355–1362.