References

  1. ESCWA Water Development Report 3, Role of Desalination in Addressing Water Scarcity, United Nations Publication, New York, NY, 2009.
  2. F. Wali, The Future of Desalination Research in the Middle East, Nature Middle East, 2014.
  3. V.G. Gude, Desalination and water reuse to address global water scarcity, Rev. Environ. Sci. Biotechnol., 16 (2017) 591–609.
  4. Desalination by the Numbers, International Desalination Association, 2018.
  5. Y. Cohen, R. Semiat, A. Rahardianto, A perspective on reverse osmosis water desalination: quest for sustainability, Am. Inst. Chem. Eng., 63 (2017) 1771–1784.
  6. S.A. Abdul-Wahab, M.A. Al-Weshahi, Brine management: substituting chlorine with on-site produced sodium hypochlorite for environmentally improved desalination processes, Water Resour. Manage., 23 (2009) 2437–2454.
  7. A.M. Bilton, R. Wiesman, A.F.M. Arif, S.M. Zubair, S. Dubowsky, On the feasibility of community-scale photovoltaic-powered reverse osmosis desalination systems for remote locations, Renewable Energy, 36 (2011) 3246–3256.
  8. N. Voutchkov, Energy use for membrane seawater desalination – current status and trends, Desalination, 431 (2018) 2–14.
  9. S. Lattemann, T. Höpner, Environmental impact and impact assessment of seawater desalination, Desalination, 220 (2008) 1–15.
  10. F. Ameen, J.A. Stagner, D.S.-K. Ting, The carbon footprint and environmental impact assessment of desalination, Int. J. Environ. Stud., 75 (2018) 45–58.
  11. T.M. Missimer, R.G. Maliva, U.A. Whitaker, Environmental issues in seawater reverse osmosis desalination: intakes and outfalls, Desalination, 434 (2018) 198–215.
  12. J.L. Fuentes-Bargues, Analysis of the process of environmental impact assessment for seawater desalination plants in Spain, Desalination, 347 (2014) 166–174.
  13. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  14. National Research Council, Desalination, A National Perspective, The National Academies Press, Washington, DC, 2008.
  15. M. Latorre, Environmental impact of brine disposal on Posidonia seagrasses, Desalination, 182 (2005) 517–524.
  16. E. Gacia, O. Invers, M. Manzanera, E. Ballesteros, J. Romero, Impact of the brine from a desalination plant on a shallow seagrass (Posidonia oceanica) meadow, Estuarine Coastal Shelf Sci., 72 (2007) 579–590.
  17. A. Giwa, V. Dufour, F. Al Marzooqi, M. Al Kaabi, S.W. Hasan, Brine management methods: recent innovations and current status, Desalination, 407 (2017) 1–23.
  18. J. Morillo, J. Usero, D. Rosado, H. El Bakouri, A. Riaza, F.J. Bernaola, Comparative study of brine management technologies for desalination plants, Desalination, 336 (2014) 32–49.
  19. A.S. Sánchez, I.B.R. Nogueira, R.A. Kalid, Uses of the reject brine from inland desalination for fish farming, Spirulina cultivation, and irrigation of forage shrub and crops, Desalination, 364 (2015) 96–107.
  20. Y. Chen, X. Tang, R.V. Kapoore, C. Xu, S. Vaidyanathan, Influence of nutrient status on the accumulation of biomass and lipid in Nannochloropsis salina and Dunaliella salina, Energy Convers. Manage., 106 (2015) 61–72.
  21. L. Jiang, S. Luo, X. Fan, Z. Yang, R. Guo, Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2, Appl. Energy, 88 (2011) 3336–3341.
  22. M.V. Jimenez-Perez, P. Sanchez-Castillo, O. Romera, D. Fernandez-Moreno, C. Perez-Martinez, Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure, Enzyme Microb. Technol., 34 (2004) 392–398.
  23. P. Lavens, P. Sorgeloos, Manual on the Production and Use of Live Food for Aquaculture, FAO Fisheries Technical Paper (FAO), Rome, 1996.
  24. K.P. Fawley, M.W. Fawley, Observations on the diversity and ecology of freshwater Nannochloropsis (eustigmatophyceae), with descriptions of new taxa, Protist, 158 (2007) 325–336.
  25. J. Liu, Y. Song, W. Qiu, Oleaginous microalgae Nannochloropsis as a new model for biofuel production: review and analysis, Renewable Sustainable Energy Rev., 72 (2017) 154–162.
  26. X.-N. Ma, T.-P. Chen, B. Yang, J. Liu, F. Chen, Lipid production from Nannochloropsis, Mar. Drugs, 14 (2016) 1–18.
  27. L. Rodolfi, G.C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, M.R. Tredici, Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng., 102 (2009) 100–112.
  28. R.R.L. Guillard, Culture of Phytoplankton for Feeding Marine Invertebrates, W.L. Smith, M.H. Chanley, Eds., Culture of Marine Invertebrate Animal, Plenum Press, New York, NY, 1975, pp. 29–60.
  29. A.J. Martínez-Roldán, H.V. Perales-Vela, R.O. Cañizares-Villanueva, G. Torzillo, Physiological response of Nannochloropsis sp. to saline stress in laboratory batch cultures, J. Appl. Phycol., 26 (2014) 115–121.
  30. D. Simionato, E. Sforza, E.C. Carpinelli, A. Bertucco, G.M. Giacometti, T. Morosinotto, Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation, Bioresour. Technol., 102 (2011) 6026–6032.
  31. X. Chen, Y. Goh, W. Tan, I. Hossain, W.N. Chen, R. Lau, Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters, Bioresour. Technol., 102 (2011) 6005–6012.
  32. G. Estefan, R. Sommer, J. Ryan, Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North Africa region, 3rd ed., ICARDA, West Asia, 2013.
  33. A.D. Eaton, L.S. Clesceri, E.W. Rice, A.E. Greenberg, Standard Methods for the Examination of Water and Wastewater, 21st ed., Washington, DC, 2005.
  34. EPA, Methods for Determination of Metals in Environmental Samples, Washington, DC, 1991.
  35. AOAC, Method of Analysis Association of Official Agriculture Chemists, 16th ed., Washington, DC, 1995.
  36. C.J. Zhu, Y.K. Lee, Determination of biomass dry weight of marine microalgae, J. Appl. Phycol., 9 (1997) 189–194.
  37. A.B. El-Sayed, M.G. Mahamoud, S.R. Hamed, Complementary production of biofuels by the green alga Chlorella vulgaris, Int. J. Renewable Energy Res., 5 (2015) 936–943.
  38. K.E. Dickinson, C.G. Whitney, P.J. Mcginn, Nutrient remediation rates in municipal wastewater and their effect on biochemical composition of the microalga Scenedesmus sp. AMDD, Algal Res., 2 (2013) 127–134.
  39. K. Ichihara, Y. Fukubayashi, Preparation of fatty acid methyl esters for gas-liquid chromatography, J. Lipid Res., 51 (2010) 635–640.
  40. T.S. Abu-Rezq, L. Al-Musallam, J. Al-Shimmari, P. Dias, Optimum production conditions for different high-quality marine algae, Hydrobiologia, 403 (1999) 97–107.
  41. N. Gu, Q. Lin, G. Li, G. Qin, J. Lin, L. Huang, Effect of salinity change on biomass and biochemical composition of Nannochloropsis oculata, J. World Aquacult. Soc., 43 (2012) 97–106.
  42. M.L. Bartley, W.J. Boeing, A.A. Corcoran, F.O. Holguin, T. Schaub, Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms, Biomass Bioenergy, 54 (2013) 83–88.
  43. Â.P. Matos, R. Feller, E. Helena, S. Moecke, S. Santanna, Biomass, lipid productivities and fatty acids composition of marine Nannochloropsis gaditana cultured in desalination concentrate, Bioresour. Technol., 197 (2015) 48–55.
  44. W.A.F. Neto, C.R.B. Mendes, P.C. Abreu, Carotenoid production by the marine microalgae Nannochloropsis oculata in different low-cost culture media, Aquacult. Res., 49 (2018) 2527–2535.
  45. H. Campos, W.J. Boeing, B.N. Dungan, T. Schaub, Cultivating the marine microalga Nannochloropsis salina under various nitrogen sources: effect on biovolume yields, lipid content and composition, and invasive organisms, Biomass Bioenergy, 66 (2014) 301–307.
  46. J.M.S. Rocha, J.E.C. Garcia, M.H.F. Henriques, Growth aspects of the marine microalga Nannochloropsis gaditana, Biomol. Eng., 20 (2003) 237–242.
  47. B. Cheirsilp, S. Torpee, Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation, Bioresour. Technol., 110 (2012) 510–516.
  48. S.S. Kumar, A.Saramma, Effect of organic carbon compounds on the growth and pigment composition of microalga Nannochloropsis salina, Int. J. Appl. Environ. Sci., 12 (2017) 1707–1719.
  49. R.R.L. Guillard, J.H. Ryther, Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran., Can. J. Microbiol., 8 (1962) 229–239.
  50. K. Asulabh, G. Supriya, T. Ramachandra, Effect of Salinity Concentrations on Growth Rate and Lipid Concentration in Microcystis sp., Chlorococcum sp. and Chaetoceros sp, National Conference on Conservation and Management of Wetland Ecosystems, Indian Institute of Science, Bangalore, 2012.
  51. L. Recht, A. Zarka, S. Boussiba, Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp., Appl. Microbiol. Biotechnol., 94 (2012) 1495–1503.
  52. M.M. Ismail, Dual Benefits of Microalgae in Bioremediation, Pollutant Removal and Biomass Valorization, A Review, E.D. Bidoia, R.N. Montagnolli, Eds., Biodegradation, Pollutants and Bioremediation Principles, CRC Press; Taylor & Francis Group, Florida, 2021, pp. 174–192 (in press).