1. A.T. Wolf, Water and human security, J. Contemp. Water Res. Educ., 118 (2001) 29–37.
  2. C.P. Khedun, R.S. Flores, H. Rughoonundun, R.A. Kaiser, World water supply and use: challenges for the future, Encycl. Agric. Food Syst., 5 (2014) 450–465, doi: 10.1016/ B978-0-444-52512-3.00083-8.
  3. A. Ophir, A. Gendel, G. Kronenberg, The LT-MED process for SW Cogen plants, Desal. Water Reuse, 4 (1994) 28–31.
  4. H. Liu, S.Q. Shen, L.Y. Gong, S. Chen, Shell-side two-phase pressure drop and evaporation temperature drop on falling film evaporation in a rotated square bundle, Appl. Thermal Eng., 69 (2014) 214–220.
  5. A. Ophir, F. Lokiec, Advanced MED process for most economical sea water desalination, Desalination, 182 (2005) 187–198.
  6. Y. Xue, X. Du, Z. Ge, L. Yang, Study on multi-effect distillation of seawater with low-grade heat utilization of thermal power generating unit, Appl. Thermal Eng., 141 (2018) 589–599.
  7. A. Al-Othman, N.N. Darwish, M. Qasim, M. Tawalbeh, N.A. Darwish, N. Hilal, Nuclear desalination: a state-of-the-art review, Desalination, 457 (2019) 39–61.
  8. J. Leblanc, J. Andrews, Low-Temperature Multi-Effect Evaporation Desalination Systems Coupled with Salinity-Gradient Solar Ponds, Proceedings of ISES World Congress, Berlin, Heidelberg, 2008, pp. 2151–2157.
  9. N. Shekarchi, F. Shahnia, A comprehensive review of solardriven desalination technologies for off-grid greenhouses, Int. J. Energy Res., 43 (2019) 1357–1386.
  10. G. Venkatesan, S. Iniyan, R. Goic, A prototype flash cooling desalination system using cooling water effluents, Int. J. Energy Res., 37 (2013) 1132–1140.
  11. M. Luqman, I. Ghiat, M. Maroof, F.Z. Lahlou, Y. Bicer, T. Al-Ansari, Application of the concept of a renewable energy based-polygeneration system for sustainable thermal desalination process-a thermodynamics’ perspective, Int. J. Energy Res., 44 (2020) 12344–12362.
  12. A.A. Zhukauskas, Convective Transfer in Heat Exchangers, Science Press, Moscow, 1982.
  13. M. Ishak, T.A. Tahseen, M.M. Rahman, Experimental investigation on heat transfer and pressure drop characteristics of air flow over a staggered flat tube bank in crossflow, Int. J. Automot. Mech. Eng., 7 (2013) 900–911.
  14. R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-phase, two-component flow in pipes, Chem. Eng. Prog., 45 (1949) 39–48.
  15. D. Chisholm, A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow, Int. J. Heat Mass Transfer, 10 (1967) 1767–1778.
  16. D.S. Schrage, J.T. Hsu, M.K. Jensen, Two-phase pressure drop in vertical crossflow across a horizontal tube bundle, AIChE J., 34 (1988) 107–115.
  17. R. Dowlati, M. Kawaji, A.M.C. Chan, Pitch-to-diameter effect on two-phase flow across an in-line tube bundle, AIChE J., 36 (1990) 765–772.
  18. G.P. Xu, K.W. Tou, C.P. Tso, Two-phase void fraction and pressure drop in horizontal crossflow across a tube bundle, J. Fluids Eng., 120 (1998) 140–145.
  19. P.A. Feenstra, D.S. Weaver, R.L. Judd, An improved void fraction model for two-phase cross-flow in horizontal tube bundles, Int. J. Multiphase Flow, 26 (2000) 1851–1873.
  20. L. Consolini, D. Robinson, J.R. Thome, Void fraction and twophase pressure drops for evaporating flow over horizontal tube bundles, Heat Transfer Eng., 27 (2006) 5–21.
  21. J. Mitrovic, Influence of Tube Spacing and Flow Rate on Heat Transfer from a Horizontal Tube to a Falling Liquid Film, International Heat Transfer Conference Digital Library, Begel House Inc., 1986.
  22. X. Hu, A.M. Jacobi, The intertube falling film: part 1-flow characteristics, mode transitions, and hysteresis, J. Heat Transfer, 118 (1996) 616–625.
  23. I.D.R. Grant, D. Chisholm, Two-phase flow on the shell-side of a segmentally baffled shell-and-tube heat exchanger, J. Heat Transfer, 101 (1979) 38–42.
  24. R. Ulbrich, D. Mewes, Vertical, upward gas-liquid two-phase flow across a tube bundle, Int. J. Multiphase Flow, 20 (1994) 249–272.
  25. G.P. Xu, C.P. Tso, K.W. Tou, Hydrodynamics of two-phase flow in vertical up and down-flow across a horizontal tube bundle, Int. J. Multiphase Flow, 24 (1998) 1317–1342.
  26. F.T. Kanizawa, G. Ribatski, Two-phase flow patterns across triangular tube bundles for air-water upward flow, Int. J. Multiphase Flow, 80 (2016) 43–56.
  27. K. Mao, T. Hibiki, Flow regime transition criteria for upward two-phase cross-flow in horizontal tube bundles, Appl. Thermal Eng., 112 (2017) 1533–1546.
  28. L. Gong, S. Shen, H. Liu, X. Chen, Three-dimensional heat transfer coefficient distributions in a large horizontal-tube falling film evaporator, Desalination, 357 (2015) 104–116.
  29. H. Hou, Q. Bi, H. Ma, G. Wu, Distribution characteristics of falling film thickness around a horizontal tube, Desalination, 285 (2012) 393–398.
  30. H. Blasius, Das Aehnlichkeitsgesetz Bei Reibungsvorgangen in Flüssigkeiten, V.d. Ingenieure, Mitteilungen Über Forschungsarbeiten auf Dem Gebiete des Ingenieurwesens, Vol. 131, Springer, Berlin, Heidelberg, 1913, pp. 1–41.
  31. H. Schlichting, Boundary Layer Theory, Mcgraw-Hill Book Co., New York, NY, 1968.
  32. J.W. Palen, G. Breber, J. Taborek, Prediction of flow regimes in horizontal tube-side condensation, Heat Transfer Eng., 1 (1979) 47–57.