References

  1. J. Ayyavoo, T.P.N. Nguyen, B.-M. Jun, I.-C. Kim, Y.-N. Kwon, Protection of polymeric membranes with antifouling surfacing via surface modifications, Colloids Surf. A, 506 (2016) 190–201.
  2. T. Turken, R. Sengur-Tasdemir, D.Y. Koseoglu-Imer, I. Koyuncu, Determination of filtration performances of nanocomposite hollow fiber membranes with silver nanoparticles, Environ. Eng. Sci., 32 (2015) 656–665.
  3. X. Fan, Y. Liu, X. Wang, X. Quan, S. Chen, Improvement of antifouling and antimicrobial abilities on silver–carbon nanotube based membranes under electrochemical assistance, Environ. Sci. Technol., 53 (2019) 5292–5300.
  4. V. Anand Ganesh, B. Kundukad, D. Cheng, S. Radhakrishnan, S. Ramakrishna, K.J. Van Vliet, Engineering silver-zwitter ionic composite nanofiber membrane for bacterial fouling resistance, J. Appl. Polym. Sci., 136 (2019) 47580.
  5. A.L. Ahmad, W.Y. Pang, Z.M.H. Mohd Shafie, N.D. Zaulkiflee, PES/PVP/TiO2 mixed matrix hollow fiber membrane with antifouling properties for humic acid removal, J. Water Process Eng., 31 (2019) 100827.
  6. R. Sengur-Tasdemir, V.R.S.S. Mokkapati, D.Y. Koseoglu-Imer, I. Koyuncu, Effect of polymer type on characterization and filtration performances of multi-walled carbon nanotubes (MWCNT)-COOH-based polymeric mixed matrix membranes, Environ. Technol. (United Kingdom), 39 (2017) 1226–1237.
  7. T.A. Makhetha, R.M. Moutloali, Antifouling properties of Cu(tpa)@GO/PES composite membranes and selective dye rejection, J. Membr. Sci., 554 (2018) 195–210.
  8. A. Modi, J. Bellare, Efficient removal of dyes from water by high flux and superior antifouling polyethersulfone hollow fiber membranes modified with ZnO/cGO nanohybrid, J. Water Process Eng., 29 (2019) 100783.
  9. S. Zinadini, S. Rostami, V. Vatanpour, E. Jalilian, Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite, J. Membr. Sci., 529 (2017) 133–141.
  10. N. Maximous, G. Nakhla, W. Wan, K. Wong, Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration, J. Membr. Sci., 341 (2009) 67–75.
  11. N. Nasrollahi, S. Aber, V. Vatanpour, N.M. Mahmoodi, Development of hydrophilic microporous PES ultrafiltration membrane containing CuO nanoparticles with improved antifouling and separation performance, Mater. Chem. Phys., 222 (2019) 338–350.
  12. F.N.S. Yavuz, R. Sengur Tasdemir, T. Turken, G.M. Urper, I. Koyuncu, Improvement of anti-biofouling properties of hollow fiber membranes with bismuth-BAL chelates (BisBAL), Environ. Technol. (United Kingdom), 40 (2017) 19–28.
  13. M.H.D.A. Farahani, V. Vatanpour, A comprehensive study on the performance and antifouling enhancement of the PVDF mixed matrix membranes by embedding different nanoparticulates: clay, functionalized carbon nanotube, SiO2 and TiO2, Sep. Purif. Technol., 197 (2018) 372–381.
  14. M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci., 4 (2011) 1946.
  15. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces [4], Nature, 388 (1997) 431–432.
  16. R.A. Damodar, S.-J. You, H.-H. Chou, Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes, J. Hazard. Mater., 172 (2009) 1321–1328.
  17. A. Rahimpour, M. Jahanshahi, B. Rajaeian, M. Rahimnejad, TiO2 entrapped nano-composite PVDF/SPES membranes: preparation, characterization, antifouling and antibacterial properties, Desalination, 278 (2011) 343–353.
  18. S.H. Kim, S.-Y. Kwak, B.-H. Sohn, T.H. Park, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film composite (TFC) membrane as an approach to solve biofouling problem, J. Membr. Sci., 211 (2003) 157–165.
  19. S.-Y. Kwak, S.H. Kim, S.S. Kim, Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle selfassembled aromatic polyamide thin-film-composite (TFC), Membrane, Environ. Sci. Technol., 35 (2001) 2388–2394.
  20. S.S. Madaeni, N. Ghaemi, Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation, J. Membr. Sci., 303 (2007) 221–233.
  21. H.S. Lee, S.J. Im, J.H. Kim, H.J. Kim, J.P. Kim, B.R. Min, Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles, Desalination, 219 (2008) 48–56.
  22. Y. Mansourpanah, E.M. Habili, Investigation and characterization of TiO2-TFC nanocomposite membranes; membrane preparation and UV studies, J. Membr. Sci., 1 (2015) 26–33.
  23. M.J. Lee, C.S. Ong, W.J. Lau, B.C. Ng, A.F. Ismail, S.O. Lai, Degradation of PVDF-based composite membrane and its impacts on membrane intrinsic and separation properties, J. Polym. Eng., 36 (2016) 261–268.
  24. J. Mo, S.-H. Son, J. Jegal, J. Kim, Y.H. Lee, Preparation and characterization of polyamide nanofiltration composite membranes with TiO2 layers chemically connected to the membrane surface, J. Appl. Polym. Sci., 105 (2007) 1267–1274.
  25. R.-X. Zhang, L. Braeken, T.-Y. Liu, P. Luis, X.-L. Wang, B. Van der Bruggen, Remarkable anti-fouling performance of TiO2-modified TFC membranes with mussel-inspired polydopamine binding, Appl. Sci., 7 (2017) 81–95.
  26. P. Maheswari, D. Prasannadevi, D. Mohan, Preparation and performance of silver nanoparticle incorporated polyetherethersulfone nanofiltration membranes, High Perform. Polym., 25 (2013) 174–187.
  27. D.Y. Koseoglu-Imer, B. Kose, M. Altinbas, I. Koyuncu, The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): physical properties, filtration performances, and biofouling resistances of membranes, J. Membr. Sci., 428 (2013) 620–628.
  28. M. López-Heras, I.G. Theodorou, B.F. Leo, M.P. Ryan, A.E. Porter, Towards understanding the antibacterial activity of Ag nanoparticles: electron microscopy in the analysis of the materials-biology interface in the lung, Environ. Sci. Nano, 2 (2015) 312–326.
  29. Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res., 52 (2000) 662–668.
  30. S.Y. Liau, D.C. Read, W.J. Pugh, J.R. Furr, A.D. Russell, Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions, Lett. Appl. Microbiol., 25 (1997) 279–283.
  31. J.R. Morones-Ramirez, A. Camacho, J. Tapia, M.J. Yacaman, J.R. Morones, J. Luis Elechiguerra, K. Holt, J.B. Kouri, J. Tapia Ramírez, The bactericidal effect of silver nanoparticles nanoparticles view project multifunctional nanoplatform for cancer theranostics view project SEE PROFILE The bactericidal effect of silver nanoparticles, Nanotechnology, 16 (2005) 2346–2353.
  32. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., 275 (2004) 177–182.
  33. H.-L. Yang, J.C.-T. Lin, C. Huang, Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination, Water Res., 43 (2009) 3777–3786.
  34. M. Sile-Yuksel, B. Tas, D.Y. Koseoglu-Imer, I. Koyuncu, Effect of silver nanoparticle (AgNP) location in nanocomposite membrane matrix fabricated with different polymer type on antibacterial mechanism, Desalination, 347 (2014) 120–130.
  35. E.M.V. Hoek, A.K. Ghosh, X. Huang, M. Liong, J.I. Zink, Physical–chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes, Desalination, 283 (2011) 89–99.
  36. J.S. Taurozzi, H. Arul, V.Z. Bosak, A.F. Burban, T.C. Voice, M.L. Bruening, V.V. Tarabara, Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities, J. Membr. Sci., 325 (2008) 58–68.
  37. A. Mollahosseini, A. Rahimpour, M. Jahamshahi, M. Peyravi, M. Khavarpour, The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane, Desalination, 306 (2012) 41–50.
  38. Y. Liu, E. Rosenfield, M. Hu, B. Mi, Direct observation of bacterial deposition on and detachment from nanocomposite membranes embedded with silver nanoparticles, Water Res., 47 (2013) 2949–2958.
  39. X. Cao, M. Tang, F. Liu, Y. Nie, C. Zhao, Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials, Colloids Surf. B, 81 (2010) 555–562.
  40. M. Ben-Sasson, X. Lu, E. Bar-Zeev, K.R. Zodrow, S. Nejati, G. Qi, E.P. Giannelis, M. Elimelech, In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation, Water Res., 62 (2014) 260–270.
  41. J. Yin, Y. Yang, Z. Hu, B. Deng, Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling, J. Membr. Sci., 441 (2013) 73–82.
  42. C. Ursino, R. Castro-Muñoz, E. Drioli, L. Gaara, M. Albeirutty, A. Figoli, C. Ursino, R. Castro-Muñoz, E. Drioli, L. Gaara, M.H. Albeirutty, A. Figoli, Progress of nanocomposite membranes for water treatment, Membranes (Basel), 8 (2018) 18.
  43. A. Amiri, H. Zare-Zardini, M. Shanbedi, S.N. Kazi, A. Taheri- Kafrani, B.T. Chew, A. Zarrabi, Microbial Toxicity of Different Functional Groups-Treated Carbon Nanotubes, Surface Chemistry Nanobiomaterials, William Andrew Publishing, USA, New York, 2016, pp. 33–70.
  44. S. Kar, M. Subramanian, A. Pal, A.K. Ghosh, R.C. Bindal, S. Prabhakar, J. Nuwad, C.G.S. Pillai, S. Chattopadhyay, P.K. Tewari, Preparation, Characterisation and Performance Evaluation of Anti-biofouling Property of Carbon Nanotube-Polysulfone Nanocomposite Membranes, in: AIP Conference Proceedings, American Institute of Physics, 2013, pp. 181–185.
  45. A.S. Brady-Estévez, S. Kang, M. Elimelech, A single-walled carbon-nanotube filter for removal of viral and bacterial pathogens, Small, 4 (2008) 481–484.
  46. L. Liu, J. Liu, B. Gao, F. Yang, S. Chellam, Fouling reductions in a membrane bioreactor using an intermittent electric field and cathodic membrane modified by vapor phase polymerized pyrrole, J. Membr. Sci., 394–395 (2012) 202–208.
  47. I.-H. Loh, R.A. Moody, J.C. Huang, Electrically conductive membranes: synthesis and applications, J. Membr. Sci., 50 (1990) 31–49.
  48. J. Mansouri, R.P. Burford, Novel membranes from conducting polymers, J. Membr. Sci., 87 (1994) 23–34.
  49. W.E. Price, C.O. Too, G.G. Wallace, D. Zhou, Development of membrane systems based on conducting polymers, Synth. Met., 102 (1999) 1338–1341.
  50. A.V. Dudchenko, J. Rolf, K. Russell, W. Duan, D. Jassby, Organic fouling inhibition on electrically conducting carbon nanotube– polyvinyl alcohol composite ultrafiltration membranes, J. Membr. Sci., 468 (2014) 1–10.
  51. C.D. Vecitis, M.H. Schnoor, M.S. Rahaman, J.D. Schiffman, M. Elimelech, Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation, Environ. Sci. Technol., 45 (2011) 3672–3679.
  52. R. Hashaikeh, B.S. Lalia, V. Kochkodan, N. Hilal, A novel in situ membrane cleaning method using periodic electrolysis, J. Membr. Sci., 471 (2014) 149–154.
  53. S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano, 5 (2011) 6971–6980.
  54. O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS Nano, 4 (2010) 5731–5736.
  55. Y. Zhang, S.F. Ali, E. Dervishi, Y. Xu, Z. Li, D. Casciano, A.S. Biris, Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells, ACS Nano, 4 (2010) 3181–3186.
  56. H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide, Chem. Phys. Lett., 287 (1998) 53–56.
  57. J. Lee, H.-R. Chae, Y.J. Won, K. Lee, C.-H. Lee, H.H. Lee, I.-C. Kim, J. Lee, Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment, J. Membr. Sci., 448 (2013) 223–230.
  58. Z. Xu, J. Zhang, M. Shan, Y. Li, B. Li, J. Niu, B. Zhou, X. Qian, Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes, J. Membr. Sci., 458 (2014) 1–13.
  59. H. Zhao, L. Wu, Z. Zhou, L. Zhang, H. Chen, Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide, Phys. Chem. Chem. Phys., 15 (2013) 9084.
  60. L. Yu, Y. Zhang, B. Zhang, J. Liu, H. Zhang, C. Song, Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties, J. Membr. Sci., 447 (2013) 452–462.
  61. F. Perreault, M.E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets, Environ. Sci. Technol. Lett., 1 (2014) 71–76.
  62. V.R.S.S. Mokkapati, D.Y. Koseoglu-Imer, N. Yilmaz-Deveci, I. Mijakovic, I. Koyuncu, Membrane properties and antibacterial/ anti-biofouling activity of polysulfone–graphene oxide composite membranes phase inversed in graphene oxide non-solvent, RSC Adv., 7 (2017) 4378–4386.
  63. A. Zhang, Y. Zhang, G. Pan, J. Xu, H. Yan, Y. Liu, In situ formation of copper nanoparticles in carboxylated chitosan layer: preparation and characterization of surface modified TFC membrane with protein fouling resistance and longlasting antibacterial properties, Sep. Purif. Technol., 176 (2017) 164–172.
  64. M. Li, J.C. Bradley, A.R. Badireddy, H. Lu, Ultrafiltration membranes functionalized with lipophilic bismuth dimercaptopropanol nanoparticles: anti-fouling behavior and mechanisms, Chem. Eng. J., 313 (2017) 293–300.
  65. D.L. Zhao, S. Das, T.-S. Chung, Carbon quantum dots grafted antifouling membranes for osmotic power generation via pressure-retarded osmosis process, Environ. Sci. Technol., 51 (2017) 14016–14023.
  66. S. Taghaddosi, A. Akbari, R. Yegani, Preparation, characterization and anti-fouling properties of nanoclays embedded polypropylene mixed matrix membranes, Chem. Eng. Res. Des., 125 (2017) 35–45.
  67. A. Khan, T.A. Sherazi, Y. Khan, S. Li, S.A.R. Naqvi, Z. Cui, Fabrication and characterization of polysulfone/modified nanocarbon black composite antifouling ultrafiltration membranes, J. Membr. Sci., 554 (2018) 71–82.
  68. N. Akar, B. Asar, N. Dizge, I. Koyuncu, Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles, J. Membr. Sci., 437 (2013) 216–226.
  69. S. Ayyaru, Y.-H. Ahn, Fabrication and separation performance of polyethersulfone/sulfonated TiO2 (PES–STiO2) ultrafiltration membranes for fouling mitigation, J. Ind. Eng. Chem., 67 (2018) 199–209.
  70. H. Dzinun, M.H.D. Othman, A.F. Ismail, M.H. Puteh, M.A. Rahman, J. Jaafar, N. Adrus, N.A. Hashim, Antifouling behavior and separation performance of immobilized TiO2 in dual layer hollow fiber membranes, Polym. Eng. Sci., 58 (2018) 1636–1643.
  71. Y. Zhang, Y. Wan, Y. Shi, G. Pan, H. Yan, J. Xu, M. Guo, L. Qin, Y. Liu, Facile modification of thin-film composite nanofiltration membrane with silver nanoparticles for anti-biofouling, J. Polym. Res., 23 (2016) 105.
  72. U.M. Hirsch, N. Teuscher, M. Rühl, A. Heilmann, Plasmaenhanced magnetron sputtering of silver nanoparticles on reverse osmosis membranes for improved antifouling properties, Surf. Interfaces, 16 (2019) 1–7.
  73. M.S.S.A. Saraswathi, D. Rana, S. Alwarappan, S. Gowrishankar, P. Vijayakumar, A. Nagendran, Polydopamine layered poly (ether imide) ultrafiltration membranes tailored with silver nanoparticles designed for better permeability, selectivity and antifouling, J. Ind. Eng. Chem., 76 (2019) 141–149.
  74. S. Liu, M. Zhang, F. Fang, L. Cui, J. Wu, R. Field, K. Zhang, Biogenic silver nanocomposite TFC nanofiltration membrane with antifouling properties, Desal. Water Treat., 57 (2016) 10560–10571.
  75. J. Wang, Y. Wang, J. Zhu, Y. Zhang, J. Liu, B. Van der Bruggen, Construction of TiO2@graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance, J. Membr. Sci., 533 (2017) 279–288.
  76. S. Aditya Kiran, Y. Lukka Thuyavan, G. Arthanareeswaran, T. Matsuura, A.F. Ismail, Impact of graphene oxide embedded polyethersulfone membranes for the effective treatment of distillery effluent, Chem. Eng. J., 286 (2016) 528–537.
  77. H. Jia, Z. Wu, N. Liu, Effect of nano-ZnO with different particle size on the performance of PVDF composite membrane, Plast. Rubber Compos., 46 (2017) 1–7.
  78. M.Y. Wahab, S. Muchtar, S. Jeon, L. Fang, S. Rajabzadeh, R. Takagi, N. Arahman, S. Mulyati, M. Riza, H. Matsuyama, Synergistic effects of organic and inorganic additives in preparation of composite poly(vinylidene fluoride) antifouling ultrafiltration membranes, J. Appl. Polym. Sci., 136 (2019) 47737.
  79. E. Bagheripour, A.R. Moghadassi, F. Parvizian, S.M. Hosseini, B. Van der Bruggen, Tailoring the separation performance and fouling reduction of PES based nanofiltration membrane by using a PVA/Fe3O4 coating layer, Chem. Eng. Res. Des., 144 (2019) 418–428.
  80. S.C. Low, Q.H. Ng, L.S. Tan, Study of magnetic-responsive nanoparticle on the membrane surface as a membrane antifouling surface coating, J. Polym. Res., 26 (2019) 70.
  81. F. Mohammadnezhad, M. Feyzi, S. Zinadini, A novel Ce-MOF/PES mixed matrix membrane; synthesis, characterization and antifouling evaluation, J. Ind. Eng. Chem., 71 (2019) 99–111.
  82. M.R. Esfahani, N. Koutahzadeh, A.R. Esfahani, M.D. Firouzjaei, B. Anderson, L. Peck, A novel gold nanocomposite membrane with enhanced permeation, rejection and self-cleaning ability, J. Membr. Sci., 573 (2019) 309–319.
  83. B. Khorshidi, S.A. Hosseini, G. Ma, M. McGregor, M. Sadrzadeh, Novel nanocomposite polyethersulfone-antimony tin oxide membrane with enhanced thermal, electrical and antifouling properties, Polymer (Guildf), 163 (2019) 48–56.
  84. K. Monsef, M. Homayoonfal, F. Davar, Coating carboxylic and sulfate functional groups on ZrO2 nanoparticles: antifouling enhancement of nanocomposite membranes during water treatment, React. Funct. Polym., 131 (2018) 299–314.
  85. A. Rahimpour, S.F. Seyedpour, S. Aghapour Aktij, M. Dadashi Firouzjaei, A. Zirehpour, A. Arabi Shamsabadi, S. Khoshhal Salestan, M. Jabbari, M. Soroush, Simultaneous improvement of antimicrobial, antifouling, and transport properties of forward osmosis membranes with immobilized highly-compatible polyrhodanine nanoparticles, Environ. Sci. Technol., 52 (2018) 5246–5258.
  86. E. Bagheripour, A.R. Moghadassi, S.M. Hosseini, M.B. Ray, F. Parvizian, B. Van der Bruggen, Highly hydrophilic and antifouling nanofiltration membrane incorporated with waterdispersible composite activated carbon/chitosan nanoparticles, Chem. Eng. Res. Des., 132 (2018) 812–821.
  87. Y. Feng, Z. Wang, R. Zhang, Y. Lu, Y. Huang, H. Shen, X. Lv, J. Liu, Anti-fouling graphene oxide based nanocomposites membrane for oil-water emulsion separation, Water Sci. Technol., 77 (2018) 1179–1185.
  88. M. Mukherjee, S. De, Investigation of antifouling and disinfection potential of chitosan coated iron oxide-PAN hollow fiber membrane using gram-positive and gram-negative bacteria, Mater. Sci. Eng. C, 75 (2017) 133–148.
  89. J. Wang, L. Liu, Z. Qu, Z. Qu, C. He, Outstanding antifouling performance of poly(vinylidene fluoride) membranes: novel amphiphilic brushlike copolymer blends and one-step surface zwitterionization, J. Appl. Polym. Sci., 136 (2019) 47637.
  90. J.S. Beril Melbiah, P. Joseph, D. Rana, A. Nagendran, N. Nagendra Gandhi, D.R. Mohan, Customized antifouling polyacrylonitrile ultrafiltration membranes for effective removal of organic contaminants from aqueous stream, J. Chem. Technol. Biotechnol., 94 (2019) 859–868.
  91. Y.-F. Yang, H.-Q. Hu, Y. Li, L.-S. Wan, Z.-K. Xu, Membrane surface with antibacterial property by grafting polycation, J. Membr. Sci., 376 (2011) 132–141.
  92. W. Zhao, Y. Su, C. Li, Q. Shi, X. Ning, Z. Jiang, Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent, J. Membr. Sci., 318 (2008) 405–412.
  93. Y. Wang, Y. Su, Q. Sun, X. Ma, X. Ma, Z. Jiang, Improved permeation performance of Pluronic F127–polyethersulfone blend ultrafiltration membranes, J. Membr. Sci., 282 (2006) 44–51.
  94. L.F. Hancock, S.M. Fagan, M.S. Ziolo, Hydrophilic, semipermeable membranes fabricated with poly(ethylene oxide)–polysulfone block copolymer, Biomaterials, 21 (2000) 725–733.
  95. Q. Shi, Y. Su, S. Zhu, C. Li, Y. Zhao, Z. Jiang, A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane, J. Membr. Sci., 303 (2007) 204–212.
  96. W. Ma, S. Rajabzadeh, A.R. Shaikh, Y. Kakihana, Y. Sun, H. Matsuyama, Effect of type of poly(ethylene glycol) (PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly(vinylidene fluoride) (PVDF) blend membranes, J. Membr. Sci., 514 (2016) 429–439.
  97. F. Saffarimiandoab, B. Yavuzturk Gul, S. Erkoc-Ilter, S. Guclu, S. Unal, B. Tunaboylu, Y.Z. Menceloglu, I. Koyuncu, Evaluation of biofouling behavior of zwitterionic silane coated reverse osmosis membranes fouled by marine bacteria, Prog. Org. Coat., 134 (2019) 303–311.
  98. L. Wang, Y. Su, L. Zheng, W. Chen, Z. Jiang, Highly efficient antifouling ultrafiltration membranes incorporating zwitterionic poly([3-(methacryloylamino)propyl]-dimethyl(3- sulfopropyl) ammonium hydroxide), J. Membr. Sci., 340 (2009) 164–170.
  99. Y. Yang, T.L. Ramos, J. Heo, M.D. Green, Zwitterionic poly(arylene ether sulfone) copolymer/poly(arylene ether sulfone) blends for fouling-resistant desalination membranes, J. Membr. Sci., 561 (2018) 69–78.
  100. A. Venault, C.-H. Hsu, K. Ishihara, Y. Chang, Zwitter ionic bi-continuous membranes from a phosphobetaine copolymer/poly(vinylidene fluoride) blend via VIPS for biofouling mitigation, J. Membr. Sci., 550 (2018) 377–388.
  101. L.-F. Fang, S. Jeon, Y. Kakihana, J. Kakehi, B.-K. Zhu, H. Matsuyama, S. Zhao, Improved antifouling properties of polyvinyl chloride blend membranes by novel phosphate based-zwitterionic polymer additive, J. Membr. Sci., 528 (2017) 326–335.
  102. G. Rong, D. Zhou, X. Han, J. Pang, Preparation and characterization of novel zwitterionic poly(arylene ether sulfone) ultrafiltration membrane with good thermostability and excellent antifouling properties, Appl. Surf. Sci., 427 (2018) 1065–1075.
  103. G. Rong, D. Zhou, J. Pang, Preparation of high-performance antifouling polyphenylsulfone ultrafiltration membrane by the addition of sulfonated polyaniline, J. Polym. Res., 25 (2018) 66.
  104. K. Tu, P. Shen, J. Li, B. Fan, C. Yang, R. Du, Preparation of enduringly antifouling PVDF membrane with compatible zwitterionic copolymer via thermally induced phase separation, J. Appl. Polym. Sci., 132 (2015) n/a-n/a.
  105. L. Zhang, Z. Zhu, U. Azhar, J. Ma, Y. Zhang, C. Zong, S. Zhang, Synthesis of well-defined PVDF-based amphiphilic block copolymer via iodine transfer polymerization for antifouling membrane application, Ind. Eng. Chem. Res., 57 (2018) 8689–8697.
  106. Y. Sun, S. Rajabzadeh, L. Fang, S. Jeon, Z. Zhou, Y. Ohmukai, J. Miki, X. Wang, H. Matsuyama, Poly(vinylidene difluoride)/ poly(tetrafluoroethylene-co-vinylpyrrolidone) blend membranes with antifouling properties, Mater. Sci. Eng. C, 75 (2017) 79–87.
  107. S.B. Teli, A. Benamor, M. Nasser, A. Hawari, S.J. Zaidi, M. Ba-abbad, A.W. Mohammad, Effects of amphiphilic pluronic F127 on the performance of PS/SPEEK blend ultrafiltration membrane: characterization and antifouling study, J. Water Process Eng., 18 (2017) 176–184.
  108. J.S. Louie, I. Pinnau, I. Ciobanu, K.P. Ishida, A. Ng, M. Reinhard, Effects of polyether–polyamide block copolymer coating on performance and fouling of reverse osmosis membranes, J. Membr. Sci., 280 (2006) 762–770.
  109. A.V. Reddy, D. Mohan, A. Bhattacharya, V. Shah, P. Ghosh, Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer: I. Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties, J. Membr. Sci., 214 (2003) 211–221.
  110. P. Phomdum, S. Gassara, A. Deratani, W. Chinpa, Enhancement of resistance to protein fouling of poly(ether imide) membrane by surface grafting with PEG under organic solvent-free condition, Chin. J. Polym. Sci., 36 (2018) 1157–1167.
  111. Y. Wang, J.-H. Kim, K.-H. Choo, Y.-S. Lee, C.-H. Lee, Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization, J. Membr. Sci., 169 (2000) 269–276.
  112. Y. Ikada, Comparison of surface modification of polymers by different methods, Int. J. Radiat. Appl. Instrum. Part C, 39 (1992) 509–511.
  113. S. Belfer, Y. Purinson, R. Fainshtein, Y. Radchenko, O. Kedem, Surface modification of commercial composite polyamide reverse osmosis membranes, J. Membr. Sci., 139 (1998) 175–181.
  114. M. Taniguchi, J.E. Kilduff, G. Belfort, Low fouling synthetic membranes by UV-assisted graft polymerization: monomer selection to mitigate fouling by natural organic matter, J. Membr. Sci., 222 (2003) 59–70.
  115. Y. Uyama, K. Kato, Y. Ikada, Surface Modification of Polymers by Grafting, in: Grafting/Characterization Techniques/Kinetic Modelling, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 1–39.
  116. Y.-F. Zhao, P.-B. Zhang, J. Sun, C.-J. Liu, Z. Yi, L.-P. Zhu, Y.-Y. Xu, Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive, J. Colloid Interface Sci., 448 (2015) 380–388.
  117. A. Bhattacharya, B.N. Misra, Grafting: a versatile means to modify polymers: techniques, factors and applications, Prog. Polym. Sci., 29 (2004) 767–814.
  118. X. Yuan, J. Sheng, N. Shen, Surface modification of acrylonitrile copolymer membranes by grafting acrylamide. III. Kinetics and reaction mechanism initiating by Fe2+/H2O2, J. Appl. Polym. Sci., 69 (1998) 1917–1921.
  119. J. Zhang, J. Yuan, Y. Yuan, J. Shen, S. Lin, Chemical modification of cellulose membranes with sulfo ammonium zwitterionic vinyl monomer to improve hemocompatibility, Colloids Surf. B, 30 (2003) 249–257.
  120. A. Ben-David, R. Bernstein, Y. Oren, S. Belfer, C. Dosoretz, V. Freger, Facile surface modification of nanofiltration membranes to target the removal of endocrine-disrupting compounds, J. Membr. Sci., 357 (2010) 152–159.
  121. T. Jimbo, A. Tanioka, N. Minoura, Characterization of an amphoteric-charged layer grafted to the pore surface of a porous membrane, Langmuir, 14 (1998) 7112–7118, https:// doi.org/10.1021/LA9800295.
  122. F. Yao, G.-D. Fu, J. Zhao, E.-T. Kang, K.G. Neoh, Antibacterial effect of surface-functionalized polypropylene hollow fiber membrane from surface-initiated atom transfer radical polymerization, J. Membr. Sci., 319 (2008) 149–157.
  123. Q. Peng, S. Lu, D. Chen, X. Wu, P. Fan, R. Zhong, Y. Xu, Poly(vinylidene fluoride)-graft-poly(N-vinyl-2-pyrrolidone) copolymers prepared via a RAFT-mediated process and their use in antifouling and antibacterial membranes, Macromol. Biosci., 7 (2007) 1149–1159.
  124. Y.Y. Durmaz, G. Yilmaz, Y. Yagci, Polymers with side chain N-Alkoxy pyridinium ions as precursors for photoinduced grafting and modification processes, Macromol. Chem. Phys., 208 (2007) 1737–1743.
  125. L.-T. Ng, J.L. Garnett, E. Zilic, D. Nguyen, Effect of monomer structure on radiation grafting of charge transfer complexes to synthetic and naturally occurring polymers, Radiat. Phys. Chem., 62 (2001) 89–98.
  126. P. Guo, J.D. Anderson, J.J. Bozell, S. Zivanovic, The effect of solvent composition on grafting gallic acid onto chitosan via carbodiimide, Carbohydr. Polym., 140 (2016) 171–180.
  127. A.E. Ofomaja, S.L. Ngema, E.B. Naidoo, The grafting of acrylic acid onto biosorbents: effect of plant components and initiator concentration, Carbohydr. Polym., 90 (2012) 201–209.
  128. T. Shiojima, Y. Inoue, M. Kyomoto, K. Ishihara, Highefficiency preparation of poly(2-methacryloyloxyethyl phosphorylcholine) grafting layer on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization in an aqueous solution in the presence of inorganic salt additives, Acta Biomater., 40 (2016) 38–45.
  129. C.V. Chaudhari, R.K. Mondal, K.A. Dubey, V. Grover, L. Panicker, Y.K. Bhardwaj, L. Varshney, Ethylene vinyl acetate based radiation grafted hydrophilic matrices: process parameter standardization, grafting kinetics and characterization, Radiat. Phys. Chem., 125 (2016) 213–219.
  130. Y.T. Chung, L.Y. Ng, A.W. Mohammad, Sulfonated-polysulfone membrane surface modification by employing methacrylic acid through UV-grafting: optimization through response surface methodology approach, J. Ind. Eng. Chem., 20 (2014) 1549–1557.
  131. J. Pieracci, D.W. Wood, J.V. Crivello, G. Belfort, UV-assisted graft polymerization of N-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes: comparison of dip versus immersion modification techniques, Chem. Mater., 12 (2000) 2123–2133.
  132. R. Malaisamy, D. Berry, D. Holder, L. Raskin, L. Lepak, K.L. Jones, Development of reactive thin film polymer brush membranes to prevent biofouling, J. Membr. Sci., 350 (2010) 361–370.
  133. B. Pan, K. Viswanathan, C.E. Hoyle, R.B. Moore, Photoinitiated grafting of maleic anhydride onto polypropylene, J. Polym. Sci. Part A, 42 (2004) 1953–1962.
  134. M. Ulbricht, H. Yang, Porous polypropylene membranes with different carboxyl polymer brush layers for reversible protein binding via surface-initiated graft copolymerization, Chem. Mater., 17 (2005) 2622–2631.
  135. D. Tyszler, R.G. Zytner, A. Batsch, A. Brügger, S. Geissler, H. Zhou, D. Klee, T. Melin, Reduced fouling tendencies of ultrafiltration membranes in wastewater treatment by plasma modification, Desalination, 189 (2006) 119–129.
  136. M. Ulbricht, G. Belfort, Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone, J. Membr. Sci., 111 (1996) 193–215.
  137. D.S. Wavhal, E.R. Fisher, Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling, Langmuir, 19 (2002) 79–85.
  138. Y. Chang, C.-Y. Ko, Y.-J. Shih, D. Quémener, A. Deratani, T.-C. Wei, D.-M. Wang, J.-Y. Lai, Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization, J. Membr. Sci., 345 (2009) 160–169.
  139. S.J. Zaidi, K.A. Mauritz, M.K. Hassan, Membrane Surface Modification and Functionalization, Springer, Cham, 2018, pp. 1–26.
  140. J.K. Shim, H.S. Na, Y.M. Lee, H. Huh, Y.C. Nho, Surface modification of polypropylene membranes by γ-ray induced graft copolymerization and their solute permeation characteristics, J. Membr. Sci., 190 (2001) 215–226.
  141. J.R. Varcoe, R.C.T. Slade, An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells, Electrochem. Commun., 8 (2006) 839–843.
  142. S.X. Liu, J.-T. Kim, S. Kim, Effect of polymer surface modification on polymer–protein interaction via hydrophilic polymer grafting, J. Food Sci., 73 (2008) E143–E150.
  143. N.A.M. Nazri, W.J. Lau, M. Padaki, A.F. Ismail, A facile modification approach for polyacrylonitrile-based UF hollow fiber membrane utilizing polyacrylonitrile-g-poly(vinyl alcohol) graft copolymer, J. Polym. Res., 21 (2014) 594.
  144. L.-F. Fang, M.-Y. Zhou, N.-C. Wang, B.-K. Zhu, L.-P. Zhu, Improving the antifouling property of poly(vinyl chloride) membranes by poly(vinyl chloride)-g-poly(methacrylic acid) as the additive, J. Appl. Polym. Sci., 132 (2015) n/a–n/a.
  145. G. Han, J.T. Liu, K.J. Lu, T.-S. Chung, Advanced anti-fouling membranes for osmotic power generation from wastewater via pressure retarded osmosis (PRO), Environ. Sci. Technol., 52 (2018) 6686–6694.
  146. M.S. Park, B.J. Park, N.U. Kim, J.T. Park, J.H. Kim, Ultrafiltration membranes based on hybrids of an amphiphilic graft copolymer and titanium isopropoxide, J. Appl. Polym. Sci., 135 (2018) 45932.
  147. H. Lei, L. Liu, L. Huang, W. Li, W. Xing, Novel anti-fouling PVDF-g-THFMA copolymer membrane fabricated via photoinduced Cu(II)-mediated reversible deactivation radical polymerization, Polymer (Guildf), 157 (2018) 1–8.
  148. K. Akamatsu, T. Furue, F. Han, S. Nakao, Plasma graft polymerization to develop low-fouling membranes grafted with poly(2-methoxyethylacrylate), Sep. Purif. Technol., 102 (2013) 157–162.
  149. W. Zhang, Z. Yang, Y. Kaufman, R. Bernstein, Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane, J. Colloid Interface Sci., 517 (2018) 155–165.
  150. A. Bera, R.M. Gol, S. Chatterjee, S.K. Jewrajka, PEGylation and incorporation of triazine ring into thin film composite reverse osmosis membranes for enhancement of anti-organic and anti-biofouling properties, Desalination, 360 (2015) 108–117.
  151. Q.-F. An, W.-D. Sun, Q. Zhao, Y.-L. Ji, C.-J. Gao, Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers, J. Membr. Sci., 431 (2013) 171–179.
  152. N. Saxena, C. Prabhavathy, S. De, S. DasGupta, Flux enhancement by argon–oxygen plasma treatment of polyethersulfone membranes, Sep. Purif. Technol., 70 (2009) 160–165.
  153. M.L. Steen, A.C. Jordan, E.R. Fisher, Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment, J. Membr. Sci., 204 (2002) 341–357.
  154. K.R. Kull, M.L. Steen, E.R. Fisher, Surface modification with nitrogen-containing plasmas to produce hydrophilic, lowfouling membranes, J. Membr. Sci., 246 (2005) 203–215.
  155. K.L. Jepsen, M.V. Bram, S. Pedersen, Z. Yang, Membrane fouling for produced water treatment: a review study from a process control perspective, Water, 10 (2018) 847–874.
  156. S. Jiang, Y. Li, B.P. Ladewig, A review of reverse osmosis membrane fouling and control strategies, Sci. Total Environ., 595 (2017) 567–583.
  157. X. Shi, G. Tal, N.P. Hankins, V. Gitis, Fouling and cleaning of ultrafiltration membranes: a review, J. Water Process Eng., 1 (2014) 121–138.
  158. W. Zhang, L. Ding, J. Luo, M.Y. Jaffrin, B. Tang, Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: a critical review, Chem. Eng. J., 302 (2016) 446–458.