**References**

- D.S. Wang, J.J. Shen, S.H. Zhu, G.P. Jiang, Model predictive control for chlorine dosing of drinking water treatment based on support vector machine model, Desal. Water Treat., 173 (2020) 133–141.
- N. Liang, Z.H. Zou, Y.G. Wei, Regression models (SVR, EMD and FastICA) in forecasting water quality of the Haihe River of China, Desal. Water Treat., 154 (2019) 147–159.
- Y.B. Song, Quick training method for multi-layer perception and its application, Control Dec., 15 (2010) 125–127.
- J.F. Xiao, Q.M. Xiao, Control of switched reluctance motors based on improved BP neural networks, Recent Adv. Electr. Eng., 11 (2018) 97–102.
- D.X. Xu, Research on Several Filtering Algorithms with Non- Linear System, Hangzhou Dianzi University, 2014.
- S. Singhal, L. Wu, Training multilayer perceptions with the extended Kalman algorithm, Adv. Neural Inf. Process. Syst., 1 (1989) 133–140.
- I. Arasaratnam, S. Haykin, T.R. Hurd, Cubature Kalman filtering for continuous-discrete systems: theory and simulations, IEEE Trans. Signal Process., 58 (2010) 4977–4993.
- Y.Y. Qin, H.Y. Zhang, Kalman Filtering and Integrated Navigation Principle, Northwestern Polytechnical University Press, Xian, 1998.
- D. Wang, F. Yang, K.L. Tsui, Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter, IEEE Trans. Instrum. Meas., 65 (2016) 1282–1291.
- X.J. Gao, L.P. Zhai, GPS/INS integrated navigation system, Optics Precis. Eng., 12 (2014) 18–22.
- F. Zha, J.N. Xu, IUKF neural network modeling for FOG temperature drift, IEEE Trans. Syst. Eng. Electron., 24 (2019) 838–844.
- X.D. Wu, Y.N. Wang, Extended and unscented Kalman filtering based feedforward neural networks for time series prediction, Appl. Math. Model., 36 (2018) 1123–1131.
- B. Jia, M. Xin, Y. Cheng, High-degree cubature Kalman filter, Automatica, 49 (2018) 510–518.
- L. Zhang, N.G. Chui, F. Yang, High-degree cubature Kalman filter and its application in target tracking, J. Harbin Eng. Univ., 4 (2016) 12–18.
- Y.G. Zhang, Y.L. Huang, Z.M. Wu, N. Li, A high order unscented Kalman filtering method, Acta Autom. Sin., 40 (2014) 838–848.
- Y.G. Zhang, Y.L. Huang, N. Li, L. Zhao, Embedded cubature Kalman filter with adaptive setting of free parameter, Signal Process., 11 (2015) 112–116.
- Y.G. Zhang, Y.L. Huang, N. Li, L. Zhao, Interpolatory cubature Kalman filters, IET Control Theory Appl., 9 (2015) 1731–1739.
- Y.L. Huang, Y.G. Zhang, Z.M. Wu, N. Li, J.A. Chambers, A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices, IEEE Trans. Autom. Control, 63 (2017) 594–601.
- Y.L. Huang, Y.G. Zhang, Y.X. Zhao, N. Li, J.A. Chambers. A novel robust Gaussian–student’s t mixture distribution based Kalman filter, IEEE Trans. Signal Process., 67 (2019) 3606–3620.
- Y.L. Huang, Y.G. Zhang, J.A. Chambers, A novel Kullback– Leibler divergence minimization-based adaptive student’s t-filter, IEEE Trans. Signal Process., 67 (2019) 5417–5432.
- Y.L. Huang, Y.G. Zhang, N. Li, Z.M. Wu, J.A. Chambers, A novel robust student’s t-based Kalman filter, IEEE Trans. Aerosp. Electron. Syst., 53 (2017) 1545–1554.