References

  1. S.V. Bhat, S.C. Booth, E.A.N. Vantomme, S. Afroj, C.K. Yost, T.E.S. Dahms, Oxidative stress and metabolic perturbations in Escherichia coli exposed to sublethal levels of 2,4-dichlorophenoxyacetic acid, Chemosphere, 135 (2015) 453–461.
  2. A. Romero-Natale, G. Rebollar-Pérez, I. Ortiz, M.G. Tenorio- Arvide, R. Munguía-Pérez, I. Palchetti, E. Torres, A simple spectroscopic method to determine dimethoate in water samples by complex formation, J. Environ. Sci. Health., Part B, 55 (2020) 310–318.
  3. A.H. Smith, E.O. Lingas, M. Rahman, Contamination of drinking-water by arsenic in Bangladesh: a public health emergency, Bull. World Health Organ., 78 (2000) 1093–1103.
  4. M. Golshan, B. Kakavandi, M. Ahmadi, M. Azizi, Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2,4-D degradation: process feasibility, mechanism and pathway, J. Hazard. Mater., 359 (2018) 325–337.
  5. N. Orooji, A. Takdastan, R.J. Yengejeh, S. Jorfi, A.H. Davami, Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid using Fe3O4@TiO2/Cu2O magnetic nanocomposite stabilized on granular activated carbon from aqueous solution, Res. Chem. Intermed., 46 (2020) 2833–2857.
  6. J.J. Liu, M. Jiang, G. Li, L. Xu, M.J. Xie, Miniaturized saltingout liquid–liquid extraction of sulfonamides from different matrices, Anal. Chim. Acta, 679 (2010) 74–80.
  7. D.M. Han, W.P. Jia, H.D. Liang, Selective removal of 2,4-dichlorophenoxyacetic acid from water by molecularlyimprinted amino-functionalized silica gel sorbent, Int. J. Environ. Sci., 22 (2010) 237–241.
  8. X.S. Bian, J.Q. Chen, R. Ji, Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by novel photocatalytic material of tourmaline-coated TiO2 nanoparticles: kinetic study and model, Materials (Basel), 6 (2013) 1530–1542.
  9. X.L. Liu, P. Lv, G.X. Yao, C.C. Ma, Y.F. Tang, Y.T. Wu, P.W. Huo, J.M. Pan, W.D. Shi, Y.S. Yan, Selective degradation of ciprofloxacin with modified NaCl/TiO2 photocatalyst by surface molecular imprinted technology, Colloids Surf., A, 441 (2014) 420–426.
  10. B. Kordestani, R.J. Yengejeh, A. Takdastan, A.B. Neisi, A new study on photocatalytic degradation of meropenem and ceftriaxone antibiotics based on sulfate radicals: Influential factors, biodegradability, mineralization approach, Microchem. J., 146 (2019) 286–292.
  11. Y.Z. Hong, A. Ren, Y.H. Jiang, J.H. He, L.S. Xiao, W.D. Shi, Sol–gel synthesis of visible-light-driven Ni(1−x)Cu(x)Fe2O4 photocatalysts for degradation of tetracycline, Ceram. Int., 41 (2015) 1477–1486.
  12. X.N. Liu, Y.H. Tang, S.L. Luo, Y. Wang, X.L. Zhang, Y. Chen, C.B. Liu, Reduced graphene oxide and CuInS2 co-decorated TiO2 nanotube arrays for efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water, J. Photochem. Photobiol., A, 262 (2013) 22–27.
  13. K. Del Ángel-Sanchez, O. Vázquez-Cuchillo, A. Aguilar-Elguezabal, A. Cruz-López, A. Herrera-Gómez, Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid under visible light: effect of synthesis route, Mater. Chem. Phys., 139 (2013) 423–430.
  14. S. Nasseri, M. Dehghani, S. Amin, K. Naddafi, Z. Zamanian, Fate of atrazine in the agricultural soil of corn fields in Fars province of Iran, J. Environ. Health Sci. Eng., 6 (2009) 223–232.
  15. J. Sherma, Pesticide residue analysis (1999–2000): a review, J. AOAC Int., 84 (2001) 1303–1312.
  16. T. Gezahegn, B. Tegegne, F. Zewge, B.S. Chandravanshi, Saltingout assisted liquid–liquid extraction for the determination of ciprofloxacin residues in water samples by high-performance liquid chromatography-diode array detector, BMC Chem., 13 (2019) 28, https://doi.org/10.1186/s13065-019-0543-5.
  17. M.E.T. Padrón, C. Afonso-Olivares, Z. Sosa-Ferrera, J.J. Santana-Rodríguez, Microextraction techniques coupled to liquid chromatography with mass spectrometry for the determination of organic micropollutants in environmental water samples, Molecules, 19 (2014) 10320–10349.
  18. M.I. Pinto, G. Sontag, R.J. Bernardino, J.P. Noronha, Pesticides in water and the performance of the liquid-phase microextraction based techniques, Microchem J., 96 (2010) 225–237.
  19. A. Asfaram, M. Ghaedi, A. Goudarzi, M. Soylak, Comparison between dispersive liquid–liquid microextraction and ultrasoundassisted nanoparticles-dispersive solid-phase microextraction combined with microvolume spectrophotometry method for the determination of Auramine-O in water samples, RSC Adv., 5 (2015) 39084–39096.
  20. H.Y. Yan, J.J. Du, X.G. Zhang, G.L. Yang, K.H. Row, Y.K. Lv, Ultrasound-assisted dispersive liquid–liquid microextraction coupled with capillary gas chromatography for simultaneous analysis of nine pyrethroids in domestic wastewaters, J. Sep. Sci., 33 (2010) 1829–1835.
  21. Y.L. Liu, Y.H. He, Y.L. Jin, Y.Y. Huang, G.Q. Liu, R. Zhao, Preparation of monodispersed macroporous core–shell molecularly imprinted particles and their application in the determination of 2,4-dichlorophenoxyacetic acid, J. Chromatogr. A, 1323 (2014) 11–17.
  22. X.F. Liu, Q.F. Zhu, H.X. Chen, L.Z. Zhou, X.P. Dang, J.L. Huang, Preparation of 2,4-dichlorophenoxyacetic acid imprinted organic–inorganic hybrid monolithic column and application to selective solid-phase microextraction, J. Chromatogr. B, 951 (2014) 32–37.
  23. J.J. Jiménez, Simultaneous liquid–liquid extraction and dispersive solid-phase extraction as a sample preparation method to determine acidic contaminants in river water by gas chromatography/mass spectrometry, Talanta, 116 (2013) 678–687.
  24. L.F. Huang, M. He, B.B. Chen, B. Hu, Membrane-supported liquid–liquid–liquid microextraction combined with anionselective exhaustive injection capillary electrophoresisultraviolet detection for sensitive analysis of phytohormones, J. Chromatogr. A, 1343 (2014) 10–17.
  25. Y.Y. Wen, C.W. Yu, J. Zhang, C.Q. Zhu, X.S. Li, T.L. Zhang, Z.L. Niu, Determination of 2,4-D in water samples by saltingout assisted liquid–liquid extraction-UV-vis, Int. J. Adv. Res. Chem. Sci., 2 (2015) 8–13.
  26. A. Amraei, A. Niazi, M. Alimoradi, M. Hosseini, Simultaneous spectrophotometric determination of some polycyclic aromatic hydrocarbons using chemometrics methods after their preconcentration by salting-out assisted liquid–liquid extraction, Int. J. Anal. Chem., 6 (2019) 10–18.
  27. J.J. Liu, M. Jiang, G. Li, L. Xu, M.J. Xie, Miniaturized saltingout liquid–liquid extraction of sulfonamides from different matrices, Anal. Chim. Acta., 679 (2010) 74–80.
  28. M. Wang, Z.W. Cai, L. Xu, Coupling of acetonitrile deproteinization and salting-out extraction with acetonitrile stacking in chiral capillary electrophoresis for the determination of warfarin enantiomers, J. Chromatogr. A, 1218 (2011) 4045–4051.
  29. F.-J. Zhao, H. Tang, Q.-H. Zhang, J. Yang, A.K. Davey, J.-P. Wang, Salting-out homogeneous liquid–liquid extraction approach applied in sample pre-processing for the quantitative determination of entecavir in human plasma by LC-MS, J. Chromatogr. B, 881–882 (2012) 119–125.
  30. G.G. Noche, M.E.F. Laespada, J.L.P. Pavón, B.M. Cordero, S.M. Lorenzo, In-situ aqueous derivatization and determination of non-steroidal anti-inflammatory drugs by salting-outassisted liquid–liquid extraction and gas chromatography– mass spectrometry, J. Chromatogr. A, 1218 (2011) 6240–6247.
  31. American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federations (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd ed., Washington D.C., 2017.
  32. J.L. Acero, F.J. Benítez, F.J. Real, M. González, Chlorination of organophosphorus pesticides in natural waters, J. Hazard. Mater., 153 (2008) 320–328.
  33. S.C. Wendelken, Method 515.4 Determination of Chlorinated Acids in Drinking Water by Liquid–Liquid Microextraction, Derivatization, and Fast Gas Chromatography with Electron Capture Detection, DIANE Publishing, 1996.
  34. Y.Y. Wen, J.H. Li, F.F. Yang, W.W. Zhang,W.R. Li, C.Y. Liao, L.X. Chen, Salting-out assisted liquid–liquid extraction with the aid of experimental design for determination of benzimidazole fungicides in high salinity samples by highperformance liquid chromatography, Talanta, 106 (2013) 119–126.
  35. Y. Alemayehu, T. Tolcha, N. Megersa, Salting-out assisted liquid–liquid extraction combined with HPLC for quantitative extraction of trace multiclass pesticide residues from environmental waters, Am. J. Anal. Chem., 8 (2017) 433, doi: 10.4236/ajac.2017.87033.
  36. L. Dhooghe, K. Mesia, E. Kohtala, L. Tona, L. Pieters, A.J. Vlietinck, S. Apers, Development and validation of an HPLC-method for the determination of alkaloids in the stem bark extract of Nauclea pobeguinii, Talanta, 76 (2008) 462–468.
  37. D. de Beer, E. Joubert, Development of HPLC method for Cyclopia subternata phenolic compound analysis and application to other Cyclopia spp., J. Food Compos. Anal., 23 (2010) 289–297.
  38. N. Chamkasem, C. Morris, Direct determination of 2,4-dichlorophenoxyacetic acid in soybean and corn by liquid chromatography/tandem mass spectrometry, J. Regul. Sci., 4 (2016) 9–18.
  39. E. Sklivagou, K. Papadopoulou, A. Bakoulis, Determination of acid herbicides in water by LC/MS/MS, Desal. Water Treat., 13 (2010) 320–327.
  40. F.F. Donato, M.L. Martins, J.S. Munaretto, O.D. Prestes, M.B. Adaime, R. Zanella, Development of a multiresidue method for pesticide analysis in drinking water by solid phase extraction and determination by gas and liquid chromatography with triple quadrupole tandem mass spectrometry, J. Braz. Chem. Soc., 26 (2015) 2077–2087.