1. M. Zamaniasl, Numerical study of direct contact membrane distillation process: effects of operating parameters on TPC and thermal efficiency, Membr. Water Treat., 10 (2019) 387–394.
  2. A. Dastbaz, J. Karimi-Sabet, H. Ahadi, Y. Amini, Preparation and characterization of novel modified PVDF-HFP/GO/ODS composite hollow fiber membrane for Caspian Sea water desalination, Desalination, 424 (2017) 62–73.
  3. K. Razmgar, E. Saljoughi, S.M. Mousavi, Preparation and characterization of a novel hydrophilic PVDF/PVA/Al2O3 nanocomposite membrane for removal of As(V) from aqueous solutions, Polym. Compos., 40 (2019) 2452–2461.
  4. A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: a comprehensive review, Desalination, 287 (2012) 2–18.
  5. E. Karbasi, J. Karimi-Sabet, J. Mohammadi-Rovshandeh, M.A. Moosavian, H. Ahadi, Y. Amini, Experimental and numerical study of air-gap membrane distillation (AGMD): novel AGMD module for Oxygen-18 stable isotope enrichment, Chem. Eng. J., 322 (2017) 667–678.
  6. J. Zahirifar, A. Hadi, J. Karimi-Sabet, A. Dastbaz, Influence of hexagonal boron nitride nanosheets as the additives on the characteristics and performance of PVDF for air gap membrane distillation, Desalination, 460 (2019) 81–91.
  7. J. Zahirifar, J. Karimi-Sabet, S.M.A. Moosavian, A. Hadi, P. Khadiv-Parsi, Fabrication of a novel octadecylamine functionalized graphene oxide/PVDF dual-layer flat sheet membrane for desalination via air gap membrane distillation, Desalination, 428 (2018) 227–239.
  8. K.W. Lawson, D.R. Lloyd, Membrane distillation, J. Membr. Sci., 124 (1997) 1–25.
  9. E. Drioli, A. Ali, F. Macedonio, Membrane distillation: recent developments and perspectives, Desalination, 356 (2015) 56–84.
  10. L.M. Camacho, L. Dumée, J. Zhang, J.-d. Li, M. Duke, J. Gomez, S. Gray, Advances in membrane distillation for water desalination and purification applications, Water, 5 (2013) 94–196.
  11. T. Vazirnejad, J. Karimi-Sabet, A. Dastbaz, M.A. Moosavian, S.A. Ghorbanian, Application of salt additives and response surface methodology for optimization of PVDF hollow fiber membrane in DCMD and AGMD processes, J. Membr. Sci. Res., 2 (2016) 169–178.
  12. P. Yazgan-Birgi, M.I.H. Ali, H.A. Arafat, Comparative performance assessment of flat sheet and hollow fiber DCMD processes using CFD modeling, Sep. Purif. Technol., 212 (2019) 709–722.
  13. H. Yu, X. Yang, R. Wang, A.G. Fane, Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow, J. Membr. Sci., 384 (2011) 107–116.
  14. H. Yu, X. Yang, R. Wang, A.G. Fane, Analysis of heat and mass transfer by CFD for performance enhancement in direct contact membrane distillation, J. Membr. Sci., 405 (2012) 38–47.
  15. L.-H. Cheng, P.-C. Wu, J. Chen, Modeling and optimization of hollow fiber DCMD module for desalination, J. Membr. Sci., 318 (2008) 154–166.
  16. Z. Ding, R. Ma, A. Fane, A new model for mass transfer in direct contact membrane distillation, Desalination, 151 (2003) 217–227.
  17. Y.-D. Kim, Y.-B. Kim, S.-Y. Woo, Detailed modeling and simulation of an out-in configuration vacuum membrane distillation process, Water Res., 132 (2018) 23–33.
  18. V. Perfilov, A. Ali, V. Fila, A general predictive model for direct contact membrane distillation, Desalination, 445 (2018) 181–196.
  19. M.M. Teoh, S. Bonyadi, T.-S. Chung, Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process, J. Membr. Sci., 311 (2008) 371–379.
  20. J. Zhang, S. Gray, Modelling heat and mass transfers in DCMD using compressible membranes, J. Membr. Sci., 387 (2012) 7–16.
  21. A. Ali, F. Macedonio, E. Drioli, S. Aljlil, O. Alharbi, Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation, Chem. Eng. Res. Des., 91 (2013) 1966–1977.
  22. X. Yang, H. Yu, R. Wang, A.G. Fane, Analysis of the effect of turbulence promoters in hollow fiber membrane distillation modules by computational fluid dynamic (CFD) simulations, J. Membr. Sci., 415 (2012) 758–769.
  23. A. Kurdian, M. Bahreini, G. Montazeri, S. Sadeghi, Modeling of direct contact membrane distillation process: flux prediction of sodium sulfate and sodium chloride solutions, Desalination, 323 (2013) 75–82.
  24. P. Moghaddam Kamrani, O. Bakhtiari, P. Kazemi, T. Mohammadi, Theoretical modeling of direct contact membrane distillation (DCMD): effects of operation parameters on flux, Desal. Water Treat., 56 (2015) 2013–2022.
  25. Y. Zhang, Y. Peng, S. Ji, Z. Li, P. Chen, Review of thermal efficiency and heat recycling in membrane distillation processes, Desalination, 367 (2015) 223–239.
  26. J. Zhang, M. Duke, M. Hoang, Z. Xie, A. Groth, C. Tun, S. Gray, Influence of module design and membrane compressibility on VMD performance, J. Membr. Sci., 442 (2013) 31–38.
  27. Z. Li, Y. Peng, Y. Dong, H. Fan, P. Chen, L. Qiu, Q. Jiang, Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity, Appl. Surf. Sci., 317 (2014) 338–349.
  28. S. Al-Obaidani, E. Curcio, F. Macedonio, G. Di Profio, H. Al-Hinai, E. Drioli, Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation, J. Membr. Sci., 323 (2008) 85–98.
  29. M. Khayet, Solar desalination by membrane distillation: dispersion in energy consumption analysis and water production costs (a review), Desalination, 308 (2013) 89–101.
  30. K. Okiel, A.H.M. El-Aassar, T. Temraz, S. El-Etriby, H.A. Shawky, Vacuum enhanced direct contact membrane distillation for oil field produced water desalination: specific energy consumption and energy efficiency, Desal. Water Treat., 57 (2016) 11945–11955.
  31. M.R. Elmarghany, A.H. El-Shazly, M.S. Salem, M.N. Sabry, N. Nady, Thermal analysis evaluation of direct contact membrane distillation system, Case Stud. Therm. Eng., 13 (2019), 100377 doi: 10.1016/j.csite.2018.100377.
  32. G. Zaragoza, A. Ruiz-Aguirre, E. Guillén-Burrieza, Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production, Appl. Energy, 130 (2014) 491–499.