References

  1. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301–310.
  2. L. Huang, M. Zhang, C. Li, G. Shi, Graphene-based membranes for molecular separation, J. Phys. Chem. Lett., 6 (2015) 2806-2815.
  3. M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol., 47 (2013) 3715-3723.
  4. T. Basile, A. Petrella, M. Petrella, G. Boghetich, V. Petruzzelli, S. Colasuonno, D. Petruzzelli, Review of endocrine-disrupting compound removal technologies in water and wastewater treatment plants: an EU perspective, Ind. Eng. Chem. Res., 50 (2011) 8389-8401.
  5. F. Perreault, A.F. de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chem. Soc. Rev., 44 (2015) 5861-5896.
  6. D. Chohen-Tanugi, J.C. Grossman, Mechanical strength of nanoporous graphene as a desalination membrane, Nano Lett., 14 (2014) 6171-6178.
  7. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges, Water Res., 43 (2009) 2317-2348.
  8. S. Gupta, A. Henson, B. Evans, Novel formulations for scalable multilayer nanoporous graphene-based membranes for use in efficient water detoxification revisited, Desal. Water Treat., 169 (2019) 59-71.
  9. S. Garaj, S. Liu, J.A. Golovchenko, D. Branton, Molecule hugging graphene nanopores, Proc. Natl. Acad. Sci. U.S.A., 110 (2013) 12192-12196.
  10. M. Elimelech, The global challenge for adequate and safe water, J. Water Supply Res. Technol. AQUA, 55 (2006) 3-10.
  11. M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci., 4 (2011) 1946-1971.
  12. G.M. Geise, H.S. Lee, D.J. Miller, B.D. Freeman, J.E. McGrath, D.R. Paul, Water purification by membranes: the role of polymer science, J. Polym. Sci., Part B: Polym. Phys., 48 (2010) 1685–1718.
  13. D. Rana, T. Matsuura, Surface modification for antifouling membrane, Chem. Rev., 110 (2010) 2448-2471.
  14. B. Mi, M. Elimelech, Silica scaling and scaling reversibility in forward osmosis, Desalination, 312 (2013) 75-81.
  15. C. Liu, K. Rainwater, L.F. Song, Energy analysis and efficiency assessment of reverse osmosis desalination process, Desalination, 276 (2011) 1736-1744.
  16. J.E. Gu, B.M. Jun, Y.N. Kwon, Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane, Water Res., 46 (2012) 5389-5400.
  17. P. Marchetti, M.F. Solomon Jimenez, G. Szelesky, A.G. Livingston, Molecular separation with organic solvent nanofiltration: a critical review, Chem. Rev., 114 (2014) 10735-10806.
  18. R.A. Al-Juboori, T. Yusaf, Biofouling in RO system: mechanisms, monitoring and controlling, Desalination, 302 (2012) 1-23.
  19. K. Hashiba, S. Nakai, M. Ohno, W. Nishijima, T. Gotoh, T. Iizawa, Deterioration mechanism of a tertiary polyamide reverse osmosis membrane by hypochlorite, Environ. Sci. Technol., 53 (2019) 9109–9117.
  20. S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nature Nanotechnol., 10 (2015) 459-464.
  21. S. Gupta, A. Henson, B. Evans, R. Meek, Graphene-based aerogels with carbon nanotubes as ultrahigh-performing mesoporous capacitive deionization electrodes for brackish and seawater desalination, Desal. Water Treat., 162 (2019) 97-111.
  22. M.L. Hidalgo, S. Hu, O. Marshall, A. Mishchenko, A.N. Grigorenko, R.A.W. Dryfe, B. Radha, I.V. Grigorieva, A.K. Geim, Sieving hydrogen isotopes through two-dimensional crystals, Science, 351 (2016) 68-70.
  23. D. Konatham, J. Yu, T.A. Ho, A. Striolo, Simulation insights for graphene-based desalination membranes, Langmuir, 29 (2013) 11884-11897.
  24. D.C. Tanugi, L.-C. Lin, J.C. Grossman, Multilayer nanoporous graphene membranes for water desalination, Nano Lett., 16 (2016) 1027-1033.
  25. D.M. Stevens, J.Y. Shu, M. Reichert, A. Roy, Next-generation nanoporous materials: progress and prospects for reverse osmosis and nanofiltration, Ind. Eng. Chem. Res., 56 (2017) 10526-10551.
  26. A. Nicolai, B.G. Sumpter, V. Meunier, Tunable water desalination across graphene oxide framework membranes, Phys. Chem. Chem. Phys., 16 (2014) 8646-8654.
  27. R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigoriev, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science, 343 (2014) 752-754.
  28. W.F. Chan, E. Marand, S.M. Martin, Novel zwitterion functionalized carbon nanotube nanocomposite membranes for improved RO performance and surface anti-fouling resistance, J. Membr. Sci., 509 (2019) 166-175.
  29. S.R.-V. Castrillón, F. Perreault, A.F. de Faria, M. Elimelech, Interaction of graphene oxide with bacterial cell membranes: insights from force spectroscopy, Environ. Sci. Technol. Lett., 2 (2015) 112-117.
  30. W. Scholz, H.P. Boehm, Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids, Z. Anorg. Allg. Chem., 369 (1969) 327-340.
  31. A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited, J. Phys. Chem. B, 102 (1998) 4477-4482.
  32. S. Dervin, D.D. Dionysiou, S.C. Pillai, 2D nanostructures for water purification: graphene and beyond, Nanoscale, 8 (2016) 15115-15131.
  33. B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane, Desalination, 313 (2013) 199-207.
  34. S. Bano, A. Mahmood, S.-J. Kim, K.-H. Lee, Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties, J. Mater. Chem. A, 3 (2015) 2065-2071.
  35. H.M. Hegab, A. El Mekawy, T.G. Barclay, A. Michelmore, L. Zou, D. Losic, C.P. Saint, M.G. Markovic, A novel fabrication approach for multifunctional graphene-based thin film nanocomposite membranes with enhanced desalination and antibacterial characteristics, Sci. Rep., 7 (2017) 1-10.
  36. Y.P. Tang, J.X. Chan, T.S. Chung, M. Weber, C. Staudt, C. Maletzko, Simultaneously covalent and ionic bridging towards antifouling of GO-imbedded nanocomposite hollow fiber membranes, J. Mater. Chem. A, 3 (2015) 10573-10584.
  37. P.B. Lutz, E. Converse, P. Cebe, A. Asatekin, Self-assembling zwitterionic copolymers as membrane selective layers with excellent fouling resistance: effect of zwitterion chemistry, ACS Appl. Mater. Interfaces, 9 (2017) 20859-20872.
  38. T. Tong, S. Zhao, C. Boo, S.M. Hashmi, M. Elimelech, Relating silica scaling in reverse osmosis to membrane surface properties, Environ. Sci. Technol., 51 (2017) 4396-4406.
  39. T.S. Sileika, D.G. Barrett, R. Zhang, K.H.A. Lau, P.B. Messersmith, Colorless multifunctional coatings inspired by polyphenols founds in tea, chocolate, and wine, Angew. Chem. Int. Ed., 52 (2013) 10766-10770.
  40. H. Ejima, J.J. Richardson, K. Liang, J.P. Best, M.P. van Koerverden, G.K. Such, J. Cui, F. Caruso, One-step assembly of coordination complexes for versatile film and particle engineering, Science, 341 (2013) 154-157.
  41. Y. Song, J.-B. Fan, S. Wang, Recent progress in interfacial polymerization, Mater. Chem. Front., 1 (2017) 1028-1040.
  42. A.C. Atkinson, A.N. Donev, R.D. Tobias, Optimum Experimental Designs, with SAS, Oxford University Press, Oxford, pp. 511+xvi.
  43. N. Logothetidis, H.P. Wynn, Quality through Design: Experimental design, Off-Line Quality Control, and Taguchi’s Contributions, Oxford University Press, Oxford Science Publications, Oxford, pp. 464+xi.
  44. S.W. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339.
  45. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B.W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806-4814.
  46. S. Gupta, A. Irihamye, Probing the nature of electron transfer in metalloproteins on graphene-family materials as nanobiocatalytic scaffold using electrochemistry, AIP Adv., 5 (2015) 037106-1–037106-15, doi: 10.1063/1.4914186.
  47. I. Sutzkover, D. Hasson, R. Semiat, Simple technique for measuring the concentration polarization level in a reverse osmosis system, Desalination, 131 (2000) 117–127.
  48. S.G. Kim, D.H. Hyeon, J.H. Chun, B.-H. Chun, S.H. Kim, Novel thin nanocomposite RO membranes for chlorine resistance, Desal. Water Treat., 51 (2013) 6338-6345.
  49. G.V. Lowry, R.J. Hill, S. Harper, A.F. Rawle, C.O. Hendren, F. Klaessig, U. Nobbmann, P. Sayre, J. Rumble, Guidance to improve the scientific value of zeta-potential measurements in nanoEHS, Environ. Sci.: Nano, 3 (2016) 953-965.
  50. D.G. Barrett, T.S. Sileika, P.B. Messersmith, Molecular diversity in phenolic and polyphenolic precursors of tannin-inspired nanocoatings, Chem. Commun., 50 (2014) 7265-7268.
  51. C. Boo, M. Elimelech, S. Hong, Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation, J. Membr. Sci., 444 (2013) 148-156.
  52. H.M. Hegab, Y. Wimalasiri, M.G. Markovic, L. Zou, Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan, Desalination, 365 (2015) 99-107.
  53. V.M. Kochkodan, N. Hilal, V.V. Gomcharuk, L. Al-Khatib, T.I. Levadna, Effect of the surface modification of polymer membranes on their microbiological fouling, Colloid J., 68 (2006) 267-273.
  54. A.M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. London, Ser. B, 237 (1952) 37-72.
  55. V.K. Vanag, I.R. Epstein, Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion, Phys. Rev. Lett., 87 (2001) 228301-228304.
  56. A. Gierer, H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972) 30-39.
  57. Z. Tan, S. Chen, X. Peng, L. Zhang, C. Gao, Polyamide membranes with nanoscale Turing structures for water purification, Science, 360 (2018) 518-521.
  58. M. Mulder, Basic Principles of Membrane Technology, Springer, Netherlands, 1996.
  59. J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, J. Membr. Sci., 107 (1995) 1-21.
  60. F.G. Donnan, Theorie der membrangleichgewichte und membranpotentiale bei vorhandensein von nicht dialysierenden elektrolyten. Ein beitrag zur physikalisch‐chemischen physiologie, Z. Elektrochem. Angew. Phys. Chem., 17 (1911) 572–581.
  61. J. Glater, S. Hong, M. Elimelech, The search for a chlorineresistant reverse osmosis membrane, Desalination, 95 (1994) 325-345.
  62. W. Choi, J. Choi, J. Bang, J.-H. Lee, Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications, ACS Appl. Mater. Interfaces, 5 (2013) 12510-12519.
  63. J. Jeong, J.Y. Kim, J. Yoon, The role of reactive oxygen species in the electrochemical inactivation of microorganisms, Environ. Sci. Technol., 40 (2006) 6117-6122.
  64. J. Li, G. Wang, H. Zhu, M. Zhang, X. Zheng, Z. Di, X. Liu, X. Wang, Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer, Sci. Rep., 4 (2014) 4359-436.
  65. O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS Nano, 4 (2010) 5731-5736.
  66. L.C. Gerber, N. Moser, N.A. Luechinger, W.J. Stark, R.N. Grass, Phosphate starvation as an antimicrobial strategy: the controllable toxicity of lanthanum oxide nanoparticles, Chem. Commun., 48 (2012) 3869–3871.
  67. H.M. Hegab, A. El-Mekawy, L. Zou, D. Mulcahy, C.P. Saint, M.G. Markovic, The controversial antibacterial activity of graphene-based materials, Carbon, 105 (2016) 362-376.
  68. X. Xie, J. Bahnemann, S. Wang, Y. Yang, M.R. Hoffmann, Nanofiltration enable by superabsorbent polymer beads for concentrating microorganisms in water samples, Sci. Rep., 6 (2016) 1-8.