References

  1. B. Singha, S.K. Das, Biosorption of Cr(VI) ions from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies, Colloids Surf., B, 84 (2011) 221–232.
  2. Y.Z. He, Y.J. Xiang, Y.Y. Zhou, Y. Yang, J.C. Zhang, H.L. Huang, C. Shang, L. Luo, J. Gao, L. Tang, Selenium contamination, consequences and remediation techniques in water and soils: a review, Environ. Res., 164 (2018) 288–301.
  3. J. Stefaniak, A. Dutta, B. Verbinnen, M. Shakya, E.R. Rene, Selenium removal from mining and process wastewater: a systematic review of available technologies, J. Water Supply Res. Technol. AQUA, 67 (2018) 903–918.
  4. H.-T. Fan, W. Sun, B. Jiang, Q.-J. Wang, D.-W. Li, C.-C. Huang, K.-J. Wang, Z.-G. Zhang, W.-X. Li, Adsorption of antimony(III) from aqueous solution by mercapto-functionalized silicasupported organic–inorganic hybrid sorbent: mechanism insights, Chem. Eng. J., 286 (2016) 128–138.
  5. T.K. Naiya, A.K. Bhattacharya, S.K. Das, Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina, J. Colloid Interface Sci., 333 (2009) 14–26.
  6. T. Tatarchuk, A. Shyichuk, I. Mironyuk, Mu. Naushad, A review on removal of uranium(VI) ions using titanium dioxide based sorbents, J. Mol. Liq., 293 (2019) 11563, https://doi.org/10.1016/j.molliq.2019.111563.
  7. T. Tatarchuk, N. Paliychuk, R.B. Bitra, A. Shyichuk, Mu. Naushad, I. Mironyuk, D. Ziółkowska, Adsorptive removal of toxic Methylene Blue and Acid Orange 7 dyes from aqueous medium using cobalt-zinc ferrite nanoadsorbents, Desal. Water Treat., 150 (2019) 374–385.
  8. I. Mironyuk, T. Tatarchuk, Mu. Naushad, H. Vasylyeva, I. Mykytyn, Highly efficient adsorption of strontium ions by carbonated mesoporous TiO2, J. Mol. Liq., 285 (2019) 742–753.
  9. E. Bazrafshan, M. Sobhanikia, F.K. Mostafapour, H. Kamani, D. Balarak, Chromium biosorption from aqueous environments by mucilaginous seeds of Cydonia oblonga: thermodynamic, equilibrium and kinetic studies, Global NEST J., 19 (2017) 269–277.
  10. R. Kamaraj, S. Vasudevan, Decontamination of selenate from aqueous solution by oxidized multi-walled carbon nanotubes, Powder Technol., 274 (2015) 268–275.
  11. G.B. Jegadeesan, K. Mondal, S.B. Lalvani, Adsorption of Se(IV) and Se(VI) using copper-impregnated activated carbon and fly ash-extracted char carbon, Water Air Soil Pollut., 226 (2015), https://doi.org/10.1007/s11270-015-2520-5.
  12. Z.Y. Ma, C. Shan, J.L. Liang, M.P. Tong, Efficient adsorption of selenium(IV) from water by hematite modified magnetic nanoparticles, Chemosphere, 193 (2018) 134–141.
  13. S.F. Evans, M.R. Ivancevic, J.Q. Yan, A.K. Naskar, A.M. Levine, R.J. Lee, C. Tsouris, M.P. Paranthaman, Magnetic adsorbents for selective removal of selenite from contaminated water, Sep. Sci. Technol., 54 (2019) 2138–2146.
  14. A.T. Jacobson, M.H. Fan, Evaluation of natural goethite on the removal of arsenate and selenite from water, J. Environ. Sci., 76 (2019) 133–141.
  15. M. Matulová, M. Urík, M. Bujdoš, E. Duborská, M. Cesnek, M.B. Miglierini, Selenite sorption onto goethite: isotherm and ion-competitive studies, and effect of pH on sorption kinetics, Chem. Pap., 73 (2019) 2975–2985.
  16. M. Rovira, J. Giménez, M. Martínez, X. Martínez-Lladó, J. de Pablo, V. Martí, L. Duro, Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite, J. Hazard. Mater., 150 (2008) 279–284.
  17. M.J. Jang, S.Y. Pak, M.-J. Kim, Comparison of adsorption characteristics of Se(IV) and Se(VI) onto hematite: effects of reaction time, initial concentration, pH, and ionic strength, Environ. Earth Sci., 74 (2015) 1169–1173.
  18. W.L. Sun, W.Y. Pan, F. Wang, N. Xu, Removal of Se(IV) and Se(VI) by MFe2O4 nanoparticles from aqueous solution, Chem. Eng. J., 273 (2015) 353–362.
  19. N. Gezer, M. Gülfen, A.O. Aydın, Adsorption of selenite and selenate ions onto thiourea-formaldehyde resin, J. Appl. Polym. Sci., 122 (2011) 1134–1141.
  20. J.M. Wei, W. Zhang, W.Y. Pan, C.R. Li, W.L. Sun, Experimental and theoretical investigations on Se(IV) and Se(VI) adsorption to UiO-66-based metal-organic frameworks, Environ. Sci.: Nano, 5 (2018) 1441–1453.
  21. K. Kalaitzidou, A.-A. Nikoletopoulos, N. Tsiftsakis, F. Pinakidou, M. Mitrakas, Adsorption of Se(IV) and Se(VI) species by iron oxy-hydroxides: effect of positive surface charge density, Sci. Total Environ., 687 (2019) 1197–1206.
  22. A. Onoguchi, G. Granata, D. Haraguchi, H. Hayashi, C. Tokoro, Kinetics and mechanism of selenate and selenite removal in solution by green rust-sulfate, R. Soc. Open Sci., 6 (2019) 182147, doi: 10.1098/rsos.182147.
  23. J.S. Zhang, R.S. Stanforth, S.O. Pehkonen, Effect of replacing a hydroxyl group with a methyl group on arsenic(V) species adsorption on goethite (α-FeOOH), J. Colloid Interface Sci., 306 (2007) 16–21.
  24. F. Yang, S.S. Zhang, H.P. Li, S.S. Li, K. Cheng, J.-S. Li, D.C.W. Tsang, Corn straw-derived biochar impregnated with α-FeOOH nanorods for highly effective copper removal, Chem. Eng. J., 348 (2018) 191–201.
  25. E.M. Cálix, L.C. Tan, E.R. Rene, Y.V. Nancharaiah, E.D. Van Hullebusch, P.N.L. Lens, Simultaneous removal of sulfate and selenate from wastewater by process integration of an ion exchange column and upflow anaerobic sludge blanket bioreactor, Sep. Sci. Technol., 54 (2019) 1387–1399.
  26. S. Hasan, A. Ghosh, K. Race, R. Schreiber Jr., M. Prelas, Dispersion of FeOOH on chitosan matrix for simultaneous removal of As(III) and As(V) from drinking water, Sep. Sci. Technol., 49 (2014) 2863–2877.
  27. G.L. Zhang, M.A. Gomez, S.H. Yao, X. Ma, S.F. Li, X. Cao, S.Y. Zang, Y.F. Jia, Systematic study on the reduction efficiency of ascorbic acid and thiourea on selenate and selenite at high and trace concentrations, Environ. Sci. Pollut. Res., 26 (2019) 10159–10173.
  28. M. Xiao, Y.P. Zhao, S.F. Li, Facile synthesis of chrysanthemumlike mesoporous α-FeOOH and its adsorptive behavior of antimony from aqueous solution, J. Dispersion Sci. Technol., 41 (2020) 1812–1820.
  29. S.K. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetensk Handl., 24 (1898) 1–39.
  30. Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. Prot., 76 (1998) 332–340.
  31. H.-T. Fan, Y. Sun, Q. Tang, W.-L. Li, T. Sun, Selective adsorption of antimony(III) from aqueous solution by ion-imprinted organic–inorganic hybrid sorbent: kinetics, isotherms and thermodynamics, J. Taiwan Inst. Chem. Eng., 45 (2014) 2640–2648.
  32. S. Vasudevan, B.S. Kannan, J. Lakshmi, S. Mohanraj, G. Sozhan, Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water, J. Chem. Technol. Biotechnol., 86 (2011) 428–436.
  33. S. Vasudevan, J. Lakshmi, G. Sozhan, Studies relating to removal of arsenate by electrochemical coagulation: optimization, kinetics, coagulant characterization, Sep. Sci. Technol., 45 (2010) 1313–1325.
  34. H.A. Taylor, N. Thon, Kinetics of chemisorption, J. Am. Chem. Soc., 74 (1952) 4169–4173.
  35. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  36. H.-T. Fan, Q. Tang, Y. Sun, Z.-G. Zhang, W.-X. Li, Selective removal of antimony(III) from aqueous solution using antimony(III)-imprinted organic–inorganic hybrid sorbents by combination of surface imprinting technique with sol–gel process, Chem. Eng. J., 258 (2014) 146–156.
  37. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  38. H.M.F. Freundlich, Über die adsorption in lösungen, Zeitschrift fur Physikalische Chemie, 57 (1906) 385–470.
  39. M. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physicochim. U.R.S.S., 12 (1940) 327–356.
  40. I. Mironyuk, T. Tatarchuk, H. Vasylyeva, V.M. Gun’ko, I. Mykytyn, Effects of chemosorbed arsenate groups on the mesoporous titania morphology and enhanced adsorption properties towards Sr(II) cations, J. Mol. Liq., 282 (2019) 587–597.
  41. S. Vasudevan, J. Lakshmi, R. Vanathi, Electrochemical coagulation for chromium removal: process optimization, kinetics, isotherms and sludge characterization, Clean – Soil Air Water, 38 (2010) 9–16.
  42. R. Kamaraj, A. Pandiarajan, R.M. Gandhi, A. Shibayama, S. Vasudevan, Eco-friendly and easily prepared graphene nanosheets for safe drinking water: removal of chlorophenoxyacetic acid herbicides, ChemistrySelect, 2 (2017) 342–355.
  43. Y. Fu, J.Y. Wang, Q.X. Liu, H.B. Zeng, Water-dispersible magnetic nanoparticle–graphene oxide composites for selenium removal, Carbon, 77 (2014) 710–721.
  44. A.W. Lounsbury, J.S. Yamani, C.P. Johnston, P. Larese-Casanova, J.B. Zimmerman, The role of counter ions in nanohematite synthesis: implications for surface area and selenium adsorption capacity, J. Hazard. Mater., 310 (2016) 117–124.
  45. C.M. Gonzalez, J. Hernandez, J.G. Parsons, J.L. Gardea-Torresdey, A study of the removal of selenite and selenate from aqueous solutions using a magnetic iron/manganese oxide nanomaterial and ICP-MS, Microchem. J., 96 (2010) 324–329.
  46. S. Vasudevan, J. Lakshmi, G. Sozhan, Optimization of the process parameters for the removal of phosphate from drinking water by electrocoagulation, Desal. Water Treat., 12 (2009) 407–414.
  47. S. Vasudevan, J. Jayaraj, J. Lakshmi, G. Sozhan, Removal of iron from drinking water by electrocoagulation: adsorption and kinetics studies, Korean J. Chem. Eng., 26 (2009) 1058–1064.
  48. T. Hiemstra, R.P.J.J. Rietra, W.H. Van Riemsdijk, Surface complexation of selenite on goethite: MO/DFT geometry and charge distribution, Croat. Chem. Acta, 80 (2007) 313–324.
  49. Y.F. Jia, Y. Zheng, J.R. Lin, G.Q. Zhang, X. Ma, X. Wang, S.F. Wang, Surface sorption site and complexation structure of Ca2+ at the goethite–water interface: a molecular dynamics simulation and quantitative XANES analysis, Bull. Environ. Contam. Toxicol., 103 (2019) 64–68.