1. L. Ma, Z. Chen, C. Xu, F. Li, H. Jin, L. Shi, H.-Y. Hu, Water Meta-cycle model and indicators for industrial processes - the pulp and paper case in China, Resour. Conserv. Recyl., 139 (2018) 228–236.
  2. W. Duan, F. Meng, H. Cui, Y. Lin, G. Wang, J. Wu, Ecotoxicity of phenol and cresols to aquatic organisms: a review, Ecotoxicol. Environ. Saf., 157 (2018) 441–456.
  3. Y. Wang, H. Wei, Y. Zhao, W. Sun, C. Sun, The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst, J. Hazard. Mater., 326 (2017) 36–46.
  4. L. Ma, C. Jin, L. An, L. Huang, L. Li, H. Jin, B. Liang, H. Wei, C. Sun, Preliminary investigation of the degradation mechanism of o, m and p-cresol using sludge-derived carbon nanosheets by catalytic oxidation based on quantum chemistry, Catal. Commun., 120 (2019) 59–65.
  5. L. Ma, C. Sun, J. Ren, H. Wei, P. Liu, Efficient electrochemical incineration of phenol on activated carbon fiber as a new type of particulates, Russ. J. Electrochem., 50 (2014) 569–578.
  6. L. Ma, B. Yu, Y.H. Yu, J.M. Li, J. Ren, H.Z. Wei, C.L. Sun, Indirect electrochemical oxidation of pentachlorophenol in the presence of different halides: behavior and mechanism, Desal. Water Treat., 52 (2014) 1462–1471.
  7. H. Zhuang, H. Han, B. Hou, S. Jia, Q. Zhao, Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts, Bioresour. Technol., 166 (2014) 178–186.
  8. L. Yu, P. Han, H. Jin, H. Wei, W. Liu, L. Ma, C. Xu, Catalytic ozonation of three isomeric cresols in the presence of NaCl with nano-mesoporous β-molecular sieves, Process Saf. Environ., 129 (2019) 63–73.
  9. F. Zhang, K. Wu, H. Zhou, Y. Hu, P. Sergei, H. Wu, C. Wei, Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater, J. Environ. Manage., 224 (2018) 376–386.
  10. J. Nawrocki, B. Kasprzyk-Hordern, The efficiency and mechanisms of catalytic ozonation, Appl. Catal. B, 99 (2010) 27–42.
  11. S. Zhang, X. Quan, D. Wang, Catalytic ozonation in arrayed zinc oxide nanotubes as highly efficient mini-column catalyst reactors (MCRs)augmentation of hydroxyl radical exposure, Environ. Sci. Technol., 52 (2018) 8701–8711.
  12. M. Kermani, B. Kakavandi, M. Farzadkia, A. Esrafili, S.F. Jokandan, A. Shahsavani, Catalytic ozonation of high concentrations of catechol over TiO2/Fe3O4 magnetic coreshell nanocatalyst: optimization, toxicity and degradation pathway studies, J. Cleaner Prod., 192 (2018) 597–607.
  13. E. Grabowska, Selected perovskite oxides: characterization, preparation and photocatalytic properties—a review, Appl. Catal. B, 186 (2016) 97–126.
  14. P. Wu, J. Shi, Z. Zhou, W. Tang, L. Guo, CaTaO2N-CaZrO3 solid solution: Band-structure engineering and visible-lightdriven photocatalytic hydrogen production, Int. J. Hydrogen Energy, 37 (2012) 13704–13710.
  15. R.C. Martins, R.M. Quinta-Ferreira, Catalytic ozonation of phenolic acids over a Mn–Ce–O catalyst, Appl. Catal. B, 90 (2009) 268–277.
  16. M. Carbajo, F.J. Beltrán, O. Gimeno, B. Acedo, F.J. Rivas, Ozonation of phenolic wastewaters in the presence of a perovskite type catalyst, Appl. Catal. B, 74 (2007) 203–210.
  17. O.P. Taran, A.B. Ayusheev, O.L. Ogorodnikova, I.P. Prosvirin, L.A. Isupova, V.N. Parmon, Perovskite-like catalysts LaBO3 (B = Cu, Fe, Mn, Co, Ni) for wet peroxide oxidation of phenol, Appl. Catal. B, 180 (2016) 86–93.
  18. S. Afzal, X. Quan, J. Zhang, High surface area mesoporous nanocast LaMO3 (M = Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism, Appl. Catal. B, 206 (2017) 692–703.
  19. Y. Zhang, Q. Li, Y. Long, J. Zou, Z. Song, C. Liu, L. Liu, F. Qi, B. Xu, Z. Chen, Catalytic ozonation benefit from the enhancement of electron transfer by the coupling of g-C3N4 and LaCoO3: discussion on catalyst fabrication and electron transfer pathway, Appl. Catal. B, 254 (2019) 569–579.
  20. B. Evangeline, P.A. Azeem, R. Prasada Rao, G. Swati, D. Haranath, Structural and luminescent features of cerium doped CaZrO3 blue nanophosphors, J. Alloys Comp., 705 (2017) 618–623.
  21. Y.M. Ji, D.Y. Jiang, Z.H. Wu, T. Feng, J.L. Shi, Combustion synthesis and photoluminescence of Ce3+-activated MHfO3 (M = Ba, Sr, or Ca), Mater. Res. Bull., 40 (2005) 1521–1526.
  22. R.S. André, S.M. Zanetti, J.A. Varela, E. Longo, Synthesis by a chemical method and characterization of CaZrO3 powders: potential application as humidity sensors, Ceram. Int., 40 (2014) 16627–16634.
  23. G. Villalba, R.U. Ayres, H. Schroder, Accounting for fluorine: production, use, and loss, J. Ind. Ecol., 11 (2007) 85–101.
  24. D.P. Rai, Sandeep, A. Shankar, A.P. Sakhya, T.P. Sinha, B. Merabet, M. Musa Saad, H.-E.R. Khenata, A. Boochani, S. Solaymani, R.K. Thapa, Electronic and optical properties of cubic SrHfO3 at different pressures: a first principles study, Mater. Chem. Phys., 186 (2017) 620–626.
  25. F.J. Beltrán, J. Encinar, J.F. González, Industrial wastewater advanced oxidation. Part 2. Ozone combined with hydrogen peroxide or UV radiation, Water Res., 31 (1997) 2420–2428.
  26. C. Zhao, Z. Zhou, Z. Cheng, X. Fang, Sol-gel-derived, CaZrO3-stabilized Ni/CaO-CaZrO3 bifunctional catalyst for sorptionenhanced steam methane reforming, Appl. Catal. B, 196 (2016) 16–26.
  27. C. Gang, Q. Sui, An external standard method of quantitative phase analysis of the sample containing and amorphous phase by X-ray diffraction, Acta. Metall. Sin.-Engl., 7 (1994) 179–182 (in Chinese).
  28. Z. Kesic, I. Lukic, M. Zdujic, C. Jovalekic, V. Veljkovic, D. Skala, Assessment of CaTiO3, CaMnO3, CaZrO3 and Ca2Fe2O5 perovskites as heterogeneous base catalysts for biodiesel synthesis, Fuel Process. Technol., 143 (2016) 162–168.
  29. R. Koirala, K.R. Gunugunuri, S.E. Pratsinis, P.G. Smirniotis, Effect of zirconia doping on the structure and stability of CaO-based sorbents for CO2 capture during extended operating cycles, J. Phys. Chem. C, 115 (2011) 24804–24812.
  30. Y. Joseph, W. Ranke, W. Weiss, Water on FeO(111) and Fe3O4(111): adsorption behavior on different surface terminations, J. Phys. Chem. C, 104 (2000) 3224–3236.
  31. C. Weerakkody, S. Biswas, W. Song, J. He, N. Wasalathanthri, S. Dissanayake, D.A. Kriz, B. Dutta, S.L. Suib, Controllable synthesis of mesoporous cobalt oxide for peroxide free catalytic epoxidation of alkenes under aerobic conditions, Appl. Catal. B, 221 (2018) 681–690.
  32. T. Zhang, W. Li, J.P. Croué, Catalytic ozonation of oxalate with a cerium supported palladium oxide: an efficient degradation not relying on hydroxyl radical oxidation, Environ. Sci. Technol., 45 (2011) 9339–9346.
  33. S.J. Hug, D. Bahnemann, Infrared spectra of oxalate, malonate and succinate adsorbed on the aqueous surface of rutile, anatase and lepidocrocite measured with in situ ATR-FTIR, J. Electron. Spectrosc. Relat. Phenom., 150 (2006) 208–219.
  34. J. Zhuang, Q. Tian, S. Lin, W. Yang, L. Chen, P. Liu, Precursor morphology-controlled formation of perovskites CaTiO3 and their photo-activity for As(III) removal, Appl. Catal. B, 156–157 (2014) 108–115.