1. P. Pal, M. Sen, A. Manna, J. Pal, P. Pal, S. Roy, P. Roy, Contamination of groundwater by arsenic: a review of occurrence, causes, impacts, remedies and membrane-based purification, J. Integr. Environ. Sci., 6 (2009) 295–316.
  2. R. Kumar, M. Patel, P. Singh, J. Bundschuh, C.U. Pittman, L. Trakal, D. Mohan, Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: methods, experience from, and options for Latin America, Sci. Total Environ., 694 (2019) 1–26, doi: 10.1016/j.scitotenv.2019.07.233.
  3. D. Mohan, C.U. Pittman, Arsenic removal from water/wastewater using adsorbents - a critical review, J. Hazard. Mater., 142 (2007) 1–53.
  4. M.E. Sigrist, H.R. Beldomenico, E.E. Tarifa, C.L. Pieck, C.R. Vera, Modelling diffusion and adsorption of As species in Fe/GAC adsorbent beds, 86 (2011) 1256–1264.
  5. Y. Mamindy-Pajany, C. Hurel, N. Marmier, M. Roméo, Arsenic adsorption onto hematite and goethite, C.R. Chim., 12 (2009) 876–881.
  6. F. Li, D. Geng, Q. Cao, Adsorption of As(V) on aluminum-, iron-, and manganese-(oxyhydr)oxides: equilibrium and kinetics, Desal. Water Treat., 56 (2015) 1829–1838.
  7. B. Thomson, A. Aragon, J. Anderson, J. Chwirka, P. Brady, Rapid Small Scale Column Testing for Evaluating Arsenic Adsorbents, Water Research Foundation, 2005.
  8. A. Bhatnagar, M. Sillanpää, Applications of chitin- and chitosanderivatives for the detoxification of water and wastewater - a short review, Adv. Colloid Interface Sci., 152 (2009) 26–38.
  9. S. Shahraki, H.S. Delarami, F. Khosravi, Synthesis and characterization of an adsorptive Schiff base-chitosan nanocomposite for removal of Pb(II) ion from aqueous media, Int. J. Biol. Macromol., 139 (2019) 577–586.
  10. M. Vakili, S. Deng, D. Liu, T. Li, G. Yu, Preparation of aminated cross-linked chitosan beads for efficient adsorption of hexavalent chromium, Int. J. Biol. Macromol., 139 (2019) 352–360.
  11. J. He, F. Bardelli, A. Gehin, E. Silvester, L. Charlet, Novel chitosan goethite bionanocomposite beads for arsenic remediation, Water Res., 101 (2016) 1–9.
  12. A. Padilla-Rodríguez, O. Perales-Pérez, F.R. Román-Velázquez, Removal of As(III) and As(V) oxyanions from aqueous solutions by using chitosan beads with immobilized Iron(III), Int. J. Hazard. Mater., 2 (2014) 7–17.
  13. A. Sánchez, M. Sibaja, J. Vega-Baudrit, S. Madrigal, Síntesis y caracterización de hidrogeles de quitosano obtenidos a partir del camáron langostino (Pleuroncodes planipes) con potenciales aplicaciones biomédicas, Rev. Iberoam. Polímeros, 8 (2007) 241–267.
  14. K.J. Anderson, Hardness testing, Mater. Res. Soc. Bull., 19 (1994) 76–77.
  15. G. Amy, H.C. Chen, A. Drizo, U. von Gunten, P. Brandhuber, R. Hund, Z. Chowdhury, S. Kommineni, S. Shahnawaz, M. Jekel, K. Banerjee, Adsorbent Treatment Technologies for Arsenic Removal, American Water Works Association, Denver, 2005.
  16. S. Hasan, A. Ghosh, K. Race, R. Schreiber, M. Prelas, Dispersion of FeOOH on chitosan matrix for simultaneous removal of As(III) and As(V) from drinking water, Sep. Sci. Technol., 49 (2014) 2863–2877.
  17. E. Worch, Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling, Walter de Gruyter, Dresden, 2012.
  18. F. Rubel, Design Manual: Removal of Arsenic from Drinking Water by Adsorptive Media, Ohio, 2003.
  19. T. Kawakita, J. Fujiki, K. Tsubomatsu, E. Furuya, A simple determination method of adsorption kinetics from a liquid phase fixed-bed breakthrough curve, Chem. Eng. Technol., 36 (2013) 259–267.
  20. K.D. Hristovski, P.K. Westerhoff, J.C. Crittenden, L.W. Olson, Arsenate removal by nanostructured ZrO2 spheres, Environ. Sci. Technol., 42 (2008) 3786–3790.
  21. APHA, AWWA, WEF, Standard Methods for Examination of Water and Wastewater, American Public Health Association, Washington, DC, 2005.
  22. K. Yao, J. Li, F. Yao, Y. Yin, Chitosan-Based Hydrogels: Functions and Applications, CRC Press, New York, NY, 2012.
  23. I.K.D. Dimzon, T.P. Knepper, Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares, Int. J. Biol. Macromol., 72 (2015) 939–945.
  24. A. Webster, M.D. Halling, D.M. Grant, Metal complexation of chitosan and its glutaraldehyde cross-linked derivative, Carbohydr. Res., 342 (2007) 1189–1201.
  25. R.M. Cornell, U. Schwertmann, The Iron Oxides Structure, Properties, Reaction, Ocurrences and Uses, Wiley-VCH GmbH and Co., KGaA, Weinheim, 2003.
  26. A.L. Gimsing, O.K. Borggaard, Phosphate and glyphosate adsorption by hematite and ferrihydrite and comparison with other variable-charge minerals, Clays Clay Miner., 55 (2007) 108–114.
  27. M. Hanesch, Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies, Geophys. J. Int., 177 (2009) 941–948.
  28. A. Zajaç, J. Hanuza, M. Wandas, L. Dymińska, Determination of N-acetylation degree in chitosan using Raman spectroscopy, Spectrochim. Acta, Part A, 134 (2015) 114–120.
  29. X.D. Ren, Q.S. Liu, H. Feng, X.Y. Yin, The characterization of chitosan nanoparticles by raman spectroscopy, Appl. Mech. Mater., 665 (2014) 367–370.
  30. D. Zhang, S. Wang, Y. Wang, M.A. Gomez, Y. Duan, Y. Jia, The transformation of two-line ferrihydrite into crystalline products: effect of pH and media (sulfate versus nitrate), ACS Earth Space Chem., 2 (2018) 577–587.
  31. L. Mazzetti, P.J. Thistlethwaite, Raman spectra and thermal transformations of ferrihydrite and schwertmannite, J. Raman Spectrosc., 33 (2002) 104–111.
  32. A. Jain, R.H. Loeppert, Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite, J. Environ. Qual., 29 (2000) 1422–1430.
  33. E. Agrafioti, D. Kalderis, E. Diamadopoulos, Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge, J. Environ. Manage., 133 (2014) 309–314.
  34. T.G. Asere, S. Mincke, J. De Clercq, K. Verbeken, D.A. Tessema, F. Fufa, C.V. Stevens, G. Du Laing, Removal of arsenic(V) from aqueous solutions using chitosan–red scoria and chitosan–pumice blends, Int. J. Environ. Res. Public Health, 14 (2017) 1–19.
  35. T.H. Nguyen, H.N. Tran, H.A. Vu, M.V. Trinh, T.V. Nguyen, P. Loganathan, S. Vigneswaran, T.M. Nguyen, V.T. Trinh, D.L. Vu, T.H.H. Nguyen, Laterite as a low-cost adsorbent in a sustainable decentralized filtration system to remove arsenic from groundwater in Vietnam, Sci. Total Environ., 699 (2020) 1–11, doi: 10.1016/j.scitotenv.2019.134267.
  36. A. Gupta, V.S. Chauhan, N. Sankararamakrishnan, Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater, Water Res., 43 (2009) 3862–3870.
  37. Z. Yin, J. Lützenkirchen, N. Finck, N. Celaries, K. Dardenne, H.C.B. Hansen, Adsorption of arsenic(V) onto single sheet iron oxide: X-ray absorption fine structure and surface complexation, J. Colloid Interface Sci., 554 (2019) 433–443.
  38. H. Zeng, M. Arashiro, D.E. Giammar, Effects of water chemistry and flow rate on arsenate removal by adsorption to an iron oxide-based sorbent, Water Res., 42 (2008) 4629–4636.
  39. D. Barlokova, J. Ilavsky, M. Marton, M. Kunstek, Removal of heavy metals in drinking water by iron-based sorption materials, IOP Conf. Ser.: Earth Environ. Sci., 362 (2019) 1–12, doi: 10.1088/1755-1315/362/1/012109.