1. M.M. Azim, U. Mohsin, An efficient method for the ionothermal synthesis of aluminophosphate with the LTA framework type, Microporous Mesoporous Mater., 295 (2020) 109957,
  2. R.L. Han, L. Zhou, Y.W. Luo, Controllable synthesis of Si-DD3R molecular sieves nanocrystalline by microwave assisting drygel conversion method, Mater. Res. Express, 7 (2020) 085014.
  3. L. Zhou, R. Han, Y.X. Tao, J.Q. Wang, Y.W. Luo, Optimized preparation of nanosized hollow SSZ-13 molecular sieves with ultrasonic assistance, Nanomaterials, 10 (2020) 2298,
  4. A.C. Martins, R. Fernandez-Felisbino, L.A.M. Ruotolo, Ionothermal synthesis of aluminophosphates used for ion exchange: influence of choline chloride/urea ratio, Microporous Mesoporous Mater., 149 (2012) 55–59.
  5. M.E. Davis, R.F. Lobo, Zeolite and molecular sieve synthesis, Chem. Mater., 4 (1992) 756–768.
  6. Z.L. Liu, M. Xu, X.L. Huai, C.F. Huang, L.T. Lou, Ionothermal synthesis and characterization of AlPO4 and AlGaPO4 molecular sieves with LTA topology, Microporous Mesoporous Mater., 305 (2020) 110315,
  7. S. Sogukkanli, K. Iyoki, S.P. Elangovan, K. Itabashi, T. Okubo, Seed-directed synthesis of CON-type zeolite using tetraethylammonium hydroxide as a simple organic structuredirecting agent, Chem. Lett., 46 (2017) 1419–1421.
  8. C.H. Zhang, Y. Yan, Z.X. Huang, H.Z. Shi, C.Q. Zhang, X.H. Cao, J. Jiang. Triclinic AlPO-34 zeolite synthesized with nicotine and its proton conduction properties, Inorg. Chem. Commun., 96 (2018) 165–169.
  9. P.Y. Feng, X.H. Bu, G.D. Stucky, Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate, Nature, 388 (1997) 735–741.
  10. W. Fortas, A. Djelad, M.A. Hasnaoui, M. Sassi, A. Bengueddach, Adsorption of gentian violet dyes in aqueous solution on microporous AlPOs molecular sieves synthesized by ionothermal method, Mater. Res. Express, 5 (2018) 025018.
  11. E.R. Cooper, C.D. Andrews, P.S. Wheatley, P.B. Webb, P. Wormald, R.E. Morris, Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues, Nature, 430 (2004) 1012–1016.
  12. E.J. Fayad, N. Bats, C.E.A. Kirschhock, B. Rebours, A.‐A. Quoineaud, J.A. Martens, A rational approach to the ionothermal synthesis of an AlPO4 molecular sieve with an ltatype framework, Angew. Chem. Int. Ed., 49 (2010) 4585–4588.
  13. H. Liu, Z.J. Tian, L. Wang, Y.S. Wang, D.W. Li, H.J. Ma, R.S. Xu, Ionothermal synthesis of MnAPO-SOD molecular sieve without the aid of organic structure-directing agents, Inorg. Chem., 55 (2016) 1809–1815.
  14. L.J. Han, Y.B. Wang, C.X. Li, S.J. Zhang, X.M. Lu, M.J. Cao, Simple and safe synthesis of microporous aluminophosphate molecular sieves by ionothermal approach, AIChE J., 54 (2008) 280–288.
  15. N.R. Shiju, S. Fiddy, O. Sonntag, M. Stockenhuber, G. Sankar, Selective oxidation of benzene to phenol over FeAlPO catalysts using nitrous oxide as oxidant, Chem. Commun., 47 (2006) 4955–4957.
  16. L.P. Zhou, J. Xu, H. Miao, X.Q. Li, F. Wang, Synthesis of FeCoMnAPO-5 molecular sieve and catalytic activity in cyclohexane oxidation by oxygen, Catal. Lett., 99 (2005) 231–234.
  17. C.X. Fang, X.M. Gao, X.C. Zhang, J.H. Zhu, S.-P. Sun, X.N. Wang, W.D. Wu, Z.X. Wu, Facile synthesis of alkalineearth metal manganites for the efficient degradation of phenolic compounds via catalytic ozonation and evaluation of the reaction mechanism, J. Colloid Interface Sci., 551 (2019) 164–176.
  18. R.L. Han, M. Chen, X.B. Liu, Y.H. Zhang, Y.L. Xie, Y. Sui, Controllable synthesis of Mn3O4 nanowires and application in the treatment of phenol at room temperature, Nanomaterials, 10 (2020) 461,
  19. R.L. Han, Y.H. Zhang, Y.L. Xie, Application of Mn3O4 nanowires in the dye waste water treatment at room temperature, Sep. Purif. Technol., 234 (2020) 116119,
  20. M.M. Harding, B.M. Kariuki, Microcrystal structure determination of AlPO4-CHA using synchrotron radiation, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 50 (1994) 852–854.
  21. L.D. Li, Q. Shen, J.J. Yu, Z.P. Hao, Z.P. Xu, G.Q. Max Lu, Fe–USY zeolite catalyst for effective decomposition of nitrous oxide, Environ. Sci. Technol., 41 (2007) 7901–7906.
  22. J. Perez-Ramirez, J.C. Groen, A. Brückner, M.S. Kumar, U. Bentrup, M.N. Debbagh, L.A. Villaescusa, Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5, J. Catal., 232 (2005) 318–334.
  23. X.H. Zhao, H. Wang, B.F. Dong, Z.P. Sun, G.X. Li, X.L. Wang, Facile synthesis of FeAlPO-5 molecular sieve in eutectic mixture via a microwave-assisted process, Microporous Mesoporous Mater., 151 (2012) 56–63.
  24. O. Sel, D.B. Kuang, M. Thommes, B. Smarsly, Principles of hierarchical meso- and macropore architectures by liquid crystalline and polymer colloid templating, Langmuir, 22 (2006) 2311–2322.
  25. X.H. Zhao, X.X. Zhang, Z.X. Hao, X.P. Gao, Z. Liu, Synthesis of FeAPO-5 molecular sieves with high iron contents via improved ionothermal method and their catalytic performances in phenol hydroxylation, J. Porous Mater., 25 (2017) 1007–1016.
  26. J. Pérez-Ramírez, C.H. Christensen, K. Egeblad, C.H. Christensen, J.C. Groen, Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design, Chem. Soc. Rev., 37 (2008) 2530–2542.