1. E. Forgacs, T. Cserhati, G. Oros, Removal of synthetic dyes from wastewaters: a review, Environ. Int., 30 (2004) 953–971.
  2. V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal–a review, J. Environ. Manage., 90 (2009) 2313–2342.
  3. P. Monvisade, P. Siriphannon, Chitosan intercalated montmorillonite: preparation, characterization and cationic dye adsorption, Appl. Clay Sci., 42 (2009) 427–431.
  4. P. Djomgoue, M. Siewe, E. Djoufac, P. Kenfack, D. Njopwouo, Surface modification of Cameroonian magnetite rich clay with Eriochrome Black T. Application for adsorption of nickel in aqueous solution, Appl. Surf. Sci., 258 (2012) 7470–7479.
  5. J.H. Huang, K.L. Huang, S.Q. Liu, A.T. Wang, C. Yan, Adsorption of Rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution, Colloid Surf., A, 330 (2008) 55–61.
  6. A.N. Ejhieh, M. Khorsandi, Photodecolorization of Eriochrome Black T using NiS-P zeolite as a heterogeneous catalyst, J. Hazard. Mater., 176 (2010) 629–637.
  7. M. Alkan, M. Dogan, Y. Turhan, O. Demirbas, P. Turan, Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solution, Chem. Eng. J., 139 (2008) 213–223.
  8. T. Santhi, S. Manonmani, T. Smitha, Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption, J. Hazard. Mater., 179 (2010) 178–186.
  9. R.K. Gautam, A. Mudhoo, M.C. Chattopadhyaya, Kinetic, equilibrium, thermodynamic studies and spectroscopic analysis of Alizarin Red S removal by mustard husk, J. Environ. Chem. Eng., 1 (2013) 1283–1291.
  10. R. Han, Y. Wang, W. Zou, Y. Wang, J. Shi, Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for Methylene Blue adsorption onto natural zeolite in fixed-bed column, J. Hazard. Mater., 145 (2007) 331–335.
  11. A. Sari, D. Mendil, M. Tuzen, M. Soylak, Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies, Chem. Eng. J., 144 (2008) 1–9.
  12. J. Zolgharnein, M. Bagtash, N. Asanjarani, Hybrid central composite design approach for simultaneous optimization of removal of alizarin red S and indigo carmine dyes using cetyltrimethylammonium bromide-modified TiO2 nanoparticles, J. Environ. Chem. Eng., 2 (2014) 988–1000.
  13. A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Adsorption of hazardous dye crystal violet from wastewater by waste materials, J. Colloid Interface Sci., 343 (2010) 463–473.
  14. M.D.G. de Luna, E.D. Flores, D.A.D. Genuino, C.M. Futalan, M.W. Wan, Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls-optimization, isotherm and kinetic studies, J. Taiwan Inst. Chem. Eng., 44 (2013) 646–653.
  15. Z. Alam, S.A. Muyibi, J. Toramae, Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches, J. Environ. Sci., 19 (2007) 674–677.
  16. M. Ince, O. Kaplan Ince, Box–Behnken design approach for optimizing removal of copper from wastewater using a novel and green adsorbent, At. Spectrosc., 38 (2017) 200–207.
  17. O. Kaplan Ince, M. Ince, A. Onal, Response surface modeling for Pb(II) removal from alcoholic beverages using natural clay: process optimization with Box–Behnken experimental design and determination by electrothermal AAS, At. Spectrosc., 39 (2018) 242–250.
  18. M.N.V.R. Kumar, A review of chitin and chitosan applications, React. Funct. Polym., 46 (2000) 1–27.
  19. S. Alpat, S. Kilinc Alpat, B.H. Cadirci, O. Ozbayrak, I. Yasa, Effects of biosorption parameter: kinetics, isotherm and thermodynamics for Ni(II) biosorption from aqueous solution by Circinella sp., Electron. J. Biotechnol., 13 (2010) 1–19.
  20. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology, Chem. Eng. J., 137 (2008) 462–470.
  21. K.P. Singh, S. Gupta, A.K. Singh, S. Sinha, Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach, J. Hazard. Mater., 186 (2011) 1462–1473.
  22. M. Ghaedi, H. Mazaheri, S. Khodadoust, S. Hajati, M.K. Purkait, Application of central composite design for simultaneous removal of Methylene Blue and Pb2+ ions by walnut wood activated carbon, Spectrochim. Acta, Part A, 135 (2015) 479–490.
  23. A. Asfaram, M. Ghaedi, S. Hajati, M. Rezaeinejad, A. Goudarzi, M.K. Purkait, Rapid removal of Auramine-O and Methylene Blue by ZnS:Cu nanoparticles loaded on activated carbon: a response surface methodology approach, J. Taiwan Inst. Chem. Eng., 53 (2015) 80–91.
  24. E.A. Dil, M. Ghaedi, A. Ghaedi, A. Asfaram, M. Jamshidi, M.K. Purkait, Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: kinetics and equilibrium study, J. Taiwan Inst. Chem. Eng., 59 (2016) 210–220.
  25. J.N. Sahu, J. Acharya, B.C. Meikap, Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process, J. Hazard. Mater., 172 (2009) 818–825.
  26. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York, NY, 2009.
  27. L. Ai, C. Zhang, Z. Chen, Removal of Methylene Blue from aqueous solution by a solvothermal-synthesized grapheme/ magnetite composite, J. Hazard. Mater., 192 (2011) 1515–1524.
  28. S.M. de Oliveira Brito, H.M.C. Andrade, L.F. Soares, R.P. de Azevedo, Brazil nut shells as a new biosorbent to remove Methylene Blue and indigo carmine from aqueous solutions, J. Hazard. Mater., 174 (2010) 84–92.
  29. H. Gao, S. Zhao, X. Cheng, X. Wang, L. Zheng, Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent, Chem. Eng. J., 223 (2013) 84–90.
  30. B.H. Hameed, Evaluation of papaya seeds as a novel nonconventional low-cost adsorbent for removal of Methylene Blue, J. Hazard. Mater., 162 (2009) 939–944.
  31. K. Mahapatra, D.S. Ramteke, L.J. Paliwal, Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for Methylene Blue removal, J. Anal. Appl. Pyrolysis, 95 (2012) 79–86.