1. A.J. Silva, M.B. Varesche, E. Foresti, M. Zaiat, Sulphate removal from industrial wastewater using a packed–bed anaerobic reactor, Process Biochem., 37 (2002) 927–935.
  2. L.C. Reyes-Alvarado, A. Hatzikioseyian, E.R. Rene, E. Houbron, E. Rustrian, G. Esposito, P.N.L. Lens, Hydrodynamics and mathematical modelling in a low HRT inverse fluidized bed reactor for biological sulphate reduction, Bioprocess Biosyst. Eng., 41 (2018) 1869–1882.
  3. I. Pikaar, R.A. Rozendal, Z. Yuan, J. Keller, K. Rabaey, Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities, Water Res., 45 (2011) 2281–2289.
  4. D. Nica, J.L. Davis, L. Kirby, G. Zuo, D.J. Roberts, Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers, Int. Biodeterior. Biodegrad., 46 (2000) 61–68.
  5. T.Y. Tam, C.I. Mayfield, W.E. Inniss, R. Knowles, Effect of sulfide on nitrogen fixation in a stream sediment-water system, Appl. Environ. Microbiol., 43 (1982) 1076–1079.
  6. X. Deng, Treatment Performance and Key Factors of Simultaneous Desulfurization and Denitrification Process, Harbin Institution of Technology, China, 2006, pp. 46–47.
  7. N. Ren, A. Wang, Y. Zhao, Wastewater Anaerobic Treatment of Sulfate Reducing Bacteria Ecology, Science Press, China, 2009.
  8. J. Cai, P. Zheng, J. Zhang, Z. Xie, W. Li, S. Peide, Simultaneous anaerobic sulfide and nitrate removal coupled with electricity generation in microbial fuel cell, Bioresour. Technol., 128 (2013) 760–764.
  9. SEPA, Standard Methods for the Examination of Water and Wastewater, China, Environmental Science Press, Beijing, 2002.
  10. L. Zhang, Process Performance of Desulphurization and Denitrification and Study on Microbial Property, Dalian Maritime University, China, 2017.
  11. D. Gevertz, A.J. Telang, G. Voordouw, G.E. Jenneman, Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine, Appl. Environ. Microbiol., 66 (2000) 2491–2501.
  12. S.A. Haveman, E.A. Greene, C.P. Stilwell, J.K. Voordouw, G. Voordouw, Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris hildenborough by nitrite, J. Bacteriol., 186 (2004) 7944–7950.
  13. G. Juan, C. Alfonso, M.C. Portillo, M.G. Juan, A.A. Jose, S. Cesáreo, G. Emilio, Nitrate stimulation of indigenous nitratereducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms, Water Res., 41 (2007) 3121–3131.
  14. J. Xu, Sulfide Wastewater Treatment Theory and Control Technology, Shaanxi Science and Technology Press, China, 2010.
  15. T.W. Hao, P.Y. Xiang, H.R. Mackey, K. Chi, H. Lu, H.K. Chui, M.C.M. van Loosdrecht, G.H. Chen, A review of biological sulfate conversions in wastewater treatment, Water Res., 65 (2014) 1–21.
  16. X. Hao, F. Qiu, W. der Star, M. Loosdrecht, Global situation of developing ANAMMOX technology towards engineering application, China Water Wastewater, 23 (2007) 15–19.
  17. X. Jia, D. Liu, Y. Sun, W. Xue, J. Zhang, J. Wang, Y. Zou, D. Zhang, C. Liu, H. Ma, Impacts of wastewater with various phenolic compounds on the microorganisms of anaerobic granular sludge, J. Harbin Inst. Technol., 45 (2013) 48–51.
  18. R. Wang, X.Y. Zhou, J.B. Yao, L.X. Li, Influence of nitrate concentration in anolyte on electricity generation of microbial fuel cell, Huanjing Kexue Xuebao/Acta entiae Circumstantiae, 36 (2016) 1608–1614.
  19. C.Y. Lee, K.L. Ho, D.J. Lee, A. Su, J.S. Chang, Electricity harvest from nitrate/sulfide-containing wastewaters using microbial fuel cell with autotrophic denitrifier, Pseudomonas sp. C27, Int. J. Hydrogen Energy, 37 (2012) 15827–15832.
  20. I. Ieropoulos, J. Greenman, C. Melhuish, J. Hart, Energy accumulation and improved performance in microbial fuel cells, J. Power Sour., 145 (2005) 253–256.
  21. C.E. Reimers, P. Girguis, H.A. Stecher Iii, L.M. Tender, P. Whaling, Microbial fuel cell energy from an ocean cold seep, Geobiology, 4 (2010) 123–136.
  22. L. Zhong, S. Zhang, Y. Wei, R. Bao, Power recovery coupled with sulfide and nitrate removal in separate chambers using a microbial fuel cell, Biochem. Eng. J., 124 (2017) 6–12.
  23. I. Fumio, T. Ken, H. Kenneth, K. Nealson, Horikoshi, Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from Okinawa Trough hydrothermal sediments, Int. J. Syst. Evol. Microbiol., 54 (2004) 1477–1482.
  24. T. Yamada, Y. Sekiguchi, S. Hanada, H. Imachi, A. Ohashi, H. Harada, Y. Kamagata, Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi, Electrical Transmission in A New Age, 56 (2006) 1331–1340.
  25. H. Takuya, F. Takashi, T. Akio, Aminivibrio pyruvatiphilus gen. nov., sp. nov., an anaerobic, amino-acid-degrading bacterium from soil of a Japanese rice field, Int. J. Syst. Evol. Microbiol., 63 (2013) 3679–3686.
  26. B.H. Wajdi, P. Anne, A. Thomas, R.P. Anthony, E. Gaël, B.A. Céline, H. Moktar, O. Bernard, S.L. Stéphanie, M. Michel, L.F. Marie, Mesotoga infera sp. nov., a mesophilic member of the order Thermotogales, isolated from an underground gas storage aquifer, Int. J. Syst. Evol. Microbiol., 63 (2013) 3003–3008.
  27. X.P. Zhi, Q.F. Liu, X.B. Wu, H.J. Xu, M.N. Long, Isolation and characterization of H2-producing strains Enterobacter sp. and Clostridium sp., Chin. J. Biotechnol., 23 (2007) 152–156.
  28. C. Zhang, X. Xing, Green Fluorescent Protein Quantitative Tracking of Hydrogen-Producing Bacteria Enterobacter aerogenes in Anaerobic Culture System, Abstract of the First National Conference of Chemical Engineering and Biochemical Industry (Part II), 2004.
  29. J. Qu, B. Fan, S. Liu, P. Lei, H. Liu, Autotrophic denitrification of groundwater by electrochemical process, Environ. Sci., 22 (2001) 49–52.
  30. B.B. Buchanan, L. Pine, Factors influencing the fermentation and growth of an atypical strain of Actinomyces naeslundii, Sabouraudia, 3 (1963) 26–39.
  31. C. Alex, S. Stefan, G. Markus, S. Susanne, L. Alla, D.R. Glavina, T. Hope, J. Cheng, L. Susan, F. Chen, Complete genome sequence of Desulfomicrobium baculatum type strain (XT), Stand. Genomic Sci., 1 (2009) 29–37.
  32. Z. Xu, R. Hao, J. Wang, X. Ren, Analysis of the nirS-type denitrifying bacteria in cathode of three-dimension biofilmelectrode reactor and sulfur autotrophic coupled denitrification system, Chin. J. Environ. Eng., 10 (2016) 3287–3294.
  33. Y. Mao, Y. Xia, T. Zhang, Characterization of Thaueradominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing, Bioresour. Technol., 128C (2012) 703–710.
  34. S.M. Sievert, K.M. Scott, M.G. Klotz, P.S.G. Chain, L.J. Hauser, J. Hemp, M. Hugler, M. Land, A. Lapidus, F.W. Larimer, S. Lucas, S.A. Malfatti, F. Meyer, I.T. Paulsen, Q. Ren, J. Simon, Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans, Appl. Environ. Microbiol., 74 (2008) 1145–1156.
  35. B.A. Huser, K. Wuhrmann, A.J.B. Zehnder, Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogenoxidizing methane bacterium, Arch. Microbiol., 132 (1982) 1–9.
  36. H. Imachi, S. Sakai, Y. Sekiguchi, S. Hanada, Y. Kamagata, A. Ohashi, H. Harada, Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge, Int. J. Syst. Evol. Microbiol., 58 (2008) 294–301.
  37. A. Gorlas, C. Robert, G. Gimenez, M. Drancourt, D. Raoult, Complete genome sequence of Methanomassiliicoccus luminyensis, the largest genome of a human-associated Archaea species, J. Bacteriol., 194 (2012) 4745.
  38. T. Kern, M. Linge, M. Rother, Methanobacterium aggregans sp. nov., a hydrogenotrophic methanogenic archaeon isolated from an anaerobic digester, Int. J. Syst. Evol. Microbiol., 65 (2015) 1975–1980.
  39. T. Iino, K. Mori, K. Suzuki, Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei, Int. J. Syst. Evol. Microbiol., 60 (2010) 2563–2566.