References

  1. X.Y. Zeng, D.S. Zou, A.D. Wang, Y.Y. Zhou, Y.H. Liu, Z.H. Li, F. Liu, H. Wang, Q.R. Zeng, Z.H. Xiao, Remediation of cadmium-contaminated soils using Brassica napus: effect of nitrogen fertilizers, J. Environ. Manage., 255 (2020) 109885, doi: 10.1016/j.jenvman.2019.109885.
  2. R.-Z. Wang, D.-L. Huang, Y.-G. Liu, C. Zhang, C. Lai, G.-M. Zeng, M. Cheng, X.-M. Gong, J. Wan, H. Luo, Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock, Bioresour. Technol., 261 (2018) 265–271.
  3. I.M. Lima, K.S. Ro, G.B. Reddy, D.L. Boykin, K.T. Klasson, Efficacy of chicken litter and wood biochars and their activated counterparts in heavy metal clean up from wastewater, Agriculture, 5 (2015) 806–825.
  4. S.H. Li, D.S. Zou, L.C. Li, L. Wu, F. Liu, X.Y. Zeng, H. Wang, Y.F. Zhu, Z.H. Xiao, Evolution of heavy metals during thermal treatment of manure: a critical review and outlooks, Chemosphere, 247 (2020) 125962, doi: 10.1016/j. chemosphere.2020.125962.
  5. A.G. Caporale, M. Pigna, A. Sommella, P. Conte, Effect of pruning-derived biochar on heavy metals removal and water dynamics, Biol. Fertil. Soils, 50 (2014) 1211–1222.
  6. R. Goswami, J.H. Shim, S. Deka, D. Kumari, R. Kataki, M. Kumar, Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures, Ecol. Eng., 97 (2016) 444–451.
  7. L. Beesley, M. Marmiroli, The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar, Environ. Pollut., 159 (2011) 474–480.
  8. F.S. Higashikawa, R.F. Conz, M. Colzato, C.E.P. Cerri, L.R.F. Alleoni, Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water, J. Cleaner Prod., 137 (2016) 965–972.
  9. K.L. Qiao, W.J. Tian, J. Bai, J. Dong, J. Zhao, X.X. Gong, S.H. Liu, Preparation of biochar from enteromorpha prolifera and its use for the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution, Ecotoxicol. Environ. Saf., 149 (2018) 80–87.
  10. Z. Zhou, Z.H. Xu, Q.J. Feng, D.H. Yao, J.G. Yu, D.S. Wang, S.Q. Lv, Y.F. Liu, N. Zhou, M.-E. Zhong, Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar, J. Cleaner Prod., 187 (2018) 996–1005.
  11. J. Jiang, R.-K. Xu, Application of crop straw derived biochars to Cu(II) contaminated Ultisol: evaluating role of alkali and organic functional groups in Cu(II) immobilization, Bioresour. Technol., 133 (2013) 537–545.
  12. Z. Chen, T. Liu, J.J. Tang, Z.J. Zheng, H.M. Wang, Q. Shao, G.L. Chen, Z.X. Li, Y.Q. Chen, J.W. Zhu, T. Feng, Characteristics and mechanisms of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures, Environ. Sci. Pollut. Res., 25 (2018) 11854–11866.
  13. D. Cholico-González, N. Ortiz Lara, A.M.F. Macedo, J.C. Salas, Adsorption behavior of Pb(II), Cd(II), and Zn(II) onto agave bagasse, characterization, and mechanism, ACS Omega, 5 (2020) 3302–3314.
  14. C.X. Yan, Y.M. Xu, L. Wang, X.F. Liang, Y.B. Sun, H.T. Jia, Effect of different pyrolysis temperatures on physico-chemical characteristics and lead(II) removal of biochar derived from chicken manure, RSC Adv., 10 (2020) 3667–3674.
  15. S. Álvarez-Torrellas, A. Rodríguez, G. Ovejero, J. García, Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials, Chem. Eng. J., 283 (2016) 936–947.
  16. M.T. Sekulić, S. Pap, Z. Stojanović, N. Bošković, J. Radonić, T.Š. Knudsen, Efficient removal of priority, hazardous priority and emerging pollutants with Prunus armeniaca functionalized biochar from aqueous wastes: experimental optimization and modeling, Sci. Total Environ., 613–614 (2018) 736–750.
  17. Z.T. Shen, Y.H. Zhang, F. Jin, D.S. Alessi, Y.Y. Zhang, F. Wang, O. McMillan, A. Al-Tabbaa, Comparison of nickel adsorption on biochars produced from mixed softwood and Miscanthus straw, Environ. Sci. Pollut. Res., 25 (2018) 1–10.
  18. H. Wikberg, S.L. Maunu, Characterisation of thermally modified hard- and softwoods by CP-MAS 13C NMR. Carbohydr. Polym., 58 (2004) 461–466.
  19. R. El Hage, N. Brosse, L. Chrusciel, C. Sanchez, P. Sannigrahi, A. Ragauskas, Characterization of milled wood lignin and ethanol organosolv lignin from Miscanthus, Polym. Degrad. Stab., 94 (2009) 1632–1638.
  20. E. Tronc, C.A. Hernández-Escobar, R. Ibarra-Gómez, A. Estrada-Monje, J. Navarrete-Bolaños, E.A. Zaragoza-Contreras, Blue agave fiber esterification for the reinforcement of thermoplastic composites, Carbohydr. Polym., 67 (2007) 245–255.
  21. S.Y. Wei, Influence of Biomass Feedstocks and Pyrolysis Temperatures on Physical and Chemical Properties of Biochar, Graduate University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2017.
  22. M. Nahata, C.Y. Seo, P. Krishnakumar, J. Schwank, New approaches to water purification for resource-constrained settings: production of activated biochar by chemical activation with diammonium hydrogenphosphate, Front. Chem. Sci. Eng., 12 (2018) 194–208.
  23. O. Paris, C. Zollfrank, G.A. Zickler, Decomposition and carbonisation of wood biopolymers—a microstructural study of softwood pyrolysis, Carbon, 43 (2005) 53–66.
  24. P. Singh, R. Singh, V.K. Singh, A. Borthakur, S. Madhav, V.K. Singh, D. Tiwary, V.C. Srivastava, P.K. Mishrah, Exploring temple floral refuse for biochar production as a closed loop perspective for environmental management, Waste Manage., 77 (2018) 78–86.
  25. H. Gogoi, T. Leiviskä, J. Rämö, J. Tanskanen, Production of aminated peat from branched polyethylenimine and glycidyltrimethylammonium chloride for sulphate removal from mining water, Environ. Res., 175 (2019) 323–334.
  26. G. Bin, X.D. Cao, Y. Dong, Y.M. Luo, L.Q. Ma, Colloid deposition and release in soils and their association with heavy metals, Crit. Rev. Env. Sci. Technol., 41 (2011) 336–372.
  27. W.H. Zhang, I.M. Lo, EDTA-enhanced washing for remediation of Pb- and/or Zn-contaminated soils, J. Environ. Manage., 132 (2006) 1282–1288.
  28. X.Y. Xu, X.D. Cao, L. Zhao, H.J. Zhou, Q.S. Luo, Interaction of organic and inorganic fractions of biochar with Pb(II) ion: further elucidation of mechanisms for Pb(II) removal by biochar, RSC Adv., 4 (2014) 44930–44937.
  29. Z. Zhou, Y.-G. Liu, S.-B. Liu, H.-Y. Liu, G.-M. Zeng, X.-F. Tan, C.-P. Yang, Y. Ding, Z.-L. Yan, X.-X. Cai, Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatinmodified biochar, Chem. Eng. J., 314 (2017) 223–231.
  30. T. Bandara, J.M. Xu, I.D. Potter, A. Franks, J.B.A.J. Chathurika, C.X. Tang, Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes, Chemosphere, 254 (2020) 126745, doi: 10.1016/j.chemosphere.2020.126745.
  31. S.Y. Wang, J.-H. Kwak, M.S. Islam, M.A. Naeth, M.G. El-Din, S.X. Chang, Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type, Sci. Total Environ., 712 (2020) 136538, doi: 10.1016/j. scitotenv.2020.136538.
  32. Z.-l. Chen, J.-q. Zhang, L. Huang, Z.-h. Yuan, Z.-j. Li, M.-c. Liu, Removal of Cd and Pb with biochar made from dairy manure at low temperature, J. Integr. Agric., 18 (2019) 201–210.
  33. S.C. Lei, Y. Shi, Y.P. Qiu, L. Che, C. Xue, Performance and mechanisms of emerging animal-derived biochars for immobilization of heavy metals, Sci. Total Environ., 646 (2019) 1281–1289.
  34. Y.Y. Deng, S. Huang, D.A. Laird, X.G. Wang, C.Q. Dong, Quantitative mechanisms of cadmium adsorption on rice straw- and swine manure-derived biochars, Environ. Sci. Pollut. Res., 25 (2018) 32418–32432.
  35. F.J. Qi, Y.B. Yan, D. Lamb, R. Naidu, N.S. Bolan, Y.J. Liu, Y.S. Ok, S.W. Donne, K.T. Semple, Thermal stability of biochar and its effects on cadmium sorption capacity, Bioresour. Technol., 246 (2017) 48–56.
  36. L.F. Han, H.R. Sun, K.S. Ro, K. Sun, J.A. Libra, B.S. Xing, Removal of antimony(III) and cadmium(II) from aqueous solution using animal manure-derived hydrochars and pyrochars, Bioresour. Technol., 234 (2017) 77–85.
  37. D.Y. Xu, Y. Zhao, K. Sun, B. Gao, Z.Y. Wang, J. Jin, Z.Y. Zhang, S.F. Wang, Y. Yan, X.T. Liu, F.C. Wu, Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties, Chemosphere, 111 (2014) 320–326.
  38. X.Y. Xu, X.D. Cao, L. Zhao, H.L. Wang, H.R. Yu, B. Gao, Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar, Environ. Sci. Pollut. Res., 20 (2013) 358–368.
  39. S. Batool, M. Idrees, M. Ahmad, M. Ahmad, Q. Hussain, A. Iqbal, J. Kong, Design and characterization of a biomass template/SnO2 nanocomposite for enhanced adsorption of 2,4-dichlorophenol, Environ. Res., 181 (2019) 108955, doi: 10.1016/j.envres.2019.108955.
  40. K.J. Sun, J.C. Tang, Y.Y. Gong, H.R. Zhang, Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water, Environ. Sci. Pollut. Res., 22 (2015) 16640–16651.
  41. J.Q. Deng, X.D. Li, Y.G. Liu, G.M. Zeng, J. Liang, B. Song, X. Wei, Alginate-modified biochar derived from Ca(II)-impregnated biomass: excellent anti-interference ability for Pb(II) removal, Ecotoxicol. Environ. Saf., 165 (2018) 211–218.
  42. F. Yang, Y. Gao, L.L. Sun, S.S. Zhang, J.J. Li, Y. Zhang, Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures, Environ. Sci. Pollut. Res., 25 (2018) 18528–18539.
  43. M.A. Wahab, S. Jellali, N. Jedidi, Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling, Bioresour. Technol., 101 (2010) 5070–5075.
  44. P. Stoch, A. Stoch, M. Ciecinska, I. Krakowiak, M. Sitarz, Structure of phosphate and iron-phosphate glasses by DFT calculations and FTIR/Raman spectroscopy, J. Non-Cryst. Solids, 450 (2016) 48–60.
  45. Y.L. Mei, B. Li, S.S. Fan, Biochar from rice straw for Cu2+ removal from aqueous solutions: mechanism and contribution made by acid-soluble minerals, Water Air Soil Pollut., 231 (2020) 420, https://doi.org/10.1007/s11270-020-04791-9.
  46. C. De Pasquale, V. Marsala, A.E. Berns, M. Valagussa, A. Pozzi, G. Alonzo, P. Conte, Fast field cycling NMR relaxometry characterization of biochars obtained from an industrial thermochemical process, J. Soils Sediments, 12 (2012) 1211–1221.
  47. J. Mcdonald-Wharry, M. Manley-Harris, K. Pickering, Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy, Carbon, 59 (2013) 383–405.
  48. M. Li, Y.Y. Tang, N. Ren, Z.T. Zhang, Y.M. Cao, Data processing to support explication about effect of mineral constituents on temperature-dependent structural characterization of carbon fractions in sewage sludge-derived biochar, Data Brief, 17 (2018) 1304–1306.