References
   -  D. Kriebel, J. Tickner, P. Epstein, J. Lemons, R. Levins,
    E.L. Loechler, M. Quinn, R. Rudel, T. Schettler, M. Stoto, The
    precautionary principle in environmental science, Environ.
    Health Perspect., 109 (2001) 871–876. 
-  S. Wang, J. Wu, X. Lu, W. Xu, Q. Gong, J. Ding, B. Dan, P. Xie,
    Removal of acetaminophen in the Fe2+/persulfate system:
    kinetic model and degradation pathways, Chem. Eng. J.,
    358 (2019) 1091–1100. 
-  A.E. Aiello, E. Larson, Antibacterial cleaning and hygiene
    products as an emerging risk factor for antibiotic resistance in
    the community, Lancet Infect. Dis., 3 (2003) 501–506. 
-  R. Chuanchuen, K. Beinlich, T.T. Hoang, A. Becher,
    R.R. Karkhoff-Schweizer, H.P. Schweizer, Cross-resistance
    between triclosan and antibiotics in Pseudomonas aeruginosa is
    mediated by multidrug efflux pumps: exposure of a susceptible
    mutant strain to triclosan selects nfxB mutants overexpressing
    MexCD-OprJ, Antimicrob. Agents Chemother., 45 (2001) 428–432. 
-  Y.-M. Kim, K. Murugesan, S. Schmidt, V. Bokare,
    J.-R. Jeon, E.-J. Kim, Y.-S. Chang, Triclosan susceptibility and
    co-metabolism–a comparison for three aerobic pollutantdegrading
    bacteria, Bioresour. Technol., 102 (2011) 2206–2212. 
-  Z. Song, N. Wang, L. Zhu, A. Huang, X. Zhao, H. Tang, Efficient
    oxidative degradation of triclosan by using an enhanced
    Fenton-like process, Chem. Eng. J., 198 (2012) 379–387. 
-  H. Singer, S. Müller, C. Tixier, L. Pillonel, Triclosan: occurrence
    and fate of a widely used biocide in the aquatic environment:
    field measurements in wastewater treatment plants, surface
    waters, and lake sediments, Environ. Sci. Technol., 36 (2002)
    4998–5004. 
-  F. Tohidi, Z. Cai, Fate and mass balance of triclosan and its
    degradation products: comparison of three different types of
    wastewater treatments and aerobic/anaerobic sludge digestion,
    J. Hazard. Mater., 323 (2017) 329–340. 
-  D.E. Latch, J.L. Packer, B.L. Stender, J. VanOverbeke,
    W.A. Arnold, K. McNeill, Aqueous photochemistry of triclosan:
    formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin,
    and oligomerization products, Environ. Toxicol. Chem., 24
    (2005) 517–525. 
-  C. Liyanapatirana, S.R. Gwaltney, K. Xia, Transformation of
    triclosan by Fe(III)-saturated montmorillonite, Environ. Sci.
    Technol., 44 (2010) 668–674. 
-  M.J. Martin de Vidales, C. Sáez, P. Cañizares, M.A. Rodrigo,
    Removal of triclosan by conductive-diamond electrolysis
    and sonoelectrolysis, J. Chem. Technol. Biotechnol., 88 (2013)
    823–828. 
-  Y. Liu, X. Zhu, F. Qian, S. Zhang, J. Chen, Magnetic activated
    carbon prepared from rice straw-derived hydrochar for
    triclosan removal, RSC Adv., 4 (2014) 63620–63626. 
-  T.A. Ternes, J. Stüber, N. Herrmann, D. McDowell, A. Ried,
    M. Kampmann, B. Teiser, Ozonation: a tool for removal of
    pharmaceuticals, contrast media and musk fragrances from
    wastewater?, Water Res., 37 (2003) 1976–1982. 
-  S. Suarez, M.C. Dodd, F. Omil, U. von Gunten, Kinetics of
    triclosan oxidation by aqueous ozone and consequent loss
    of antibacterial activity: relevance to municipal wastewater
    ozonation, Water Res., 41 (2007) 2481–2490. 
-  J. Jiang, S.-Y. Pang, J. Ma, Oxidation of triclosan by permanganate
    (Mn(VII)): importance of ligands and in situ formed
    manganese oxides, Environ. Sci. Technol., 43 (2009)
    8326–8331. 
-  C. Cai, Z. Zhang, H. Zhang, Electro-assisted heterogeneous
    activation of persulfate by Fe/SBA-15 for the degradation of
    Orange II, J. Hazard. Mater., 313 (2016) 209–218. 
-  J.E. Silveira, A.L. Garcia-Costa, T.O. Cardoso, J.A. Zazo,
    J.A. Casas, Indirect decolorization of azo dye Disperse Blue 3
    by electro-activated persulfate, Electrochim. Acta, 258 (2017)
    927–932. 
-  J. Li, Y. Ren, L. Lai, B. Lai, Electrolysis assisted persulfate with
    annular iron sheet as anode for the enhanced degradation of
    2, 4-dinitrophenol in aqueous solution, J. Hazard. Mater.,
    344 (2018) 778–787. 
-  B.-T. Zhang, Y. Zhang, Y. Teng, M. Fan, Sulfate radical and
    its application in decontamination technologies, Crit. Rev.
    Environ. Sci. Technol., 45 (2015) 1756–1800. 
-  M. Ahmadi, F. Ghanbari, Optimizing COD removal from
    greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical
    energy consumption, Environ. Sci. Pollut. Res., 23 (2016)
    19350–19361. 
-  S. Rodriguez, A. Santos, A. Romero, F. Vicente, Kinetic of
    oxidation and mineralization of priority and emerging
    pollutants by activated persulfate, Chem. Eng. J., 213 (2012)
    225–234. 
-  Y.-C. Lee, S.-L. Lo, P.-T. Chiueh, D.-G. Chang, Efficient
    decomposition of perfluorocarboxylic acids in aqueous solution
    using microwave-induced persulfate, Water Res., 43 (2009)
    2811–2816. 
-  L. Bu, S. Zhou, Z. Shi, C. Bi, S. Zhu, N. Gao, Iron electrode as
    efficient persulfate activator for oxcarbazepine degradation:
    performance, mechanism, and kinetic modeling, Sep. Purif.
    Technol., 178 (2017) 66–74. 
-  A. Long, H. Zhang, Selective oxidative degradation of toluene
    for the recovery of surfactant by an electro/Fe2+/persulfate
    process, Environ. Sci. Pollut. Res., 22 (2015) 11606–11616. 
-  R.H. Waldemer, P.G. Tratnyek, R.L. Johnson, J.T. Nurmi,
    Oxidation of chlorinated ethenes by heat-activated persulfate:
    kinetics and products, Environ. Sci. Technol., 41 (2007)
    1010–1015. 
-  M.R. Samarghandi, M. Leili, K. Godini, J. Mehralipour, R. Harati,
    Furfural removal from synthetic wastewater by persulfate
    anion activated with electrical current: energy consumption
    and operating costs optimization, Der Pharma Chem., 7 (2015)
    48–57. 
-  F. Ghanbari, M. Moradi, A. Eslami, M.M. Emamjomeh,
    Electrocoagulation/flotation of textile wastewater with
    simultaneous application of aluminum and iron as anode,
    Environ. Process., 1 (2014) 447–457. 
-  O. Sahu, B. Mazumdar, P. Chaudhari, Treatment of wastewater
    by electrocoagulation: a review, Environ. Sci. Pollut. Res.,
    21 (2014) 2397–2413. 
-  N. Bektaş, H. Akbulut, H. Inan, A. Dimoglo, Removal of
    phosphate from aqueous solutions by electro-coagulation,
    J. Hazard. Mater., 106 (2004) 101–105. 
-  X.-R. Xu, X.-Z. Li, Degradation of azo dye Orange G in aqueous
    solutions by persulfate with ferrous ion, Sep. Purif. Technol.,
    72 (2010) 105–111. 
-  E. Bazrafshan, A.H. Mahvi, S. Naseri, A.R. Mesdaghinia,
    Performance evaluation of electrocoagulation process for
    removal of chromium(VI) from synthetic chromium solutions
    using iron and aluminum electrodes, Turk. J. Eng. Environ. Sci.,
    32 (2008) 59–66. 
-  H. Song, L. Yan, J. Jiang, J. Ma, Z. Zhang, J. Zhang, P. Liu,
    T. Yang, Electrochemical activation of persulfates at BDD
    anode: radical or nonradical oxidation?, Water Res., 128 (2018)
    393–401. 
-  L. Bu, S. Zhu, S. Zhou, Degradation of atrazine by
    electrochemically activated persulfate using BDD anode: role
    of radicals and influencing factors, Chemosphere, 195 (2018)
    236–244. 
-  L. Wang, Y. Liu, C. Wang, X. Zhao, G.D. Mahadeva, Y. Wu, J. Ma,
    F. Zhao, Anoxic biodegradation of triclosan and the removal of
    its antimicrobial effect in microbial fuel cells, J. Hazard. Mater.,
    344 (2018) 669–678. 
-  K.S. Hashim, A. Shaw, R. Al Khaddar, M.O. Pedrola, D. Phipps,
    Iron removal, energy consumption and operating cost of
    electrocoagulation of drinking water using a new flow column
    reactor, J. Environ. Manage., 189 (2017) 98–108. 
-  F. Ozyonar, S. Aksoy, Removal of salicylic acid from aqueous
    solutions using various electrodes and different connection
    modes by electrocoagulation, Int. J. Electrochem. Sci., 11 (2016)
    3680–3696. 
-  A. Rastogi, S.R. Al-Abed, D.D. Dionysiou, Sulfate radicalbased
    ferrous–peroxymonosulfate oxidative system for PCBs
    degradation in aqueous and sediment systems, Appl. Catal. B,
    85 (2009) 171–179. 
-  S. Hammami, N. Oturan, N. Bellakhal, M. Dachraoui,
    M.A. Oturan, Oxidative degradation of direct orange 61 by
    electro-Fenton process using a carbon felt electrode: application
    of the experimental design methodology, J. Electroanal. Chem.,
    610 (2007) 75–84. 
-  N. Jaafarzadeh, M. Omidinasab, F. Ghanbari, Combined
    electrocoagulation and UV-based sulfate radical oxidation
    processes for treatment of pulp and paper wastewater, Process
    Saf. Environ. Protect., 102 (2016) 462–472. 
-  A. Romero, A. Santos, F. Vicente, C. González, Diuron abatement
    using activated persulphate: effect of pH, Fe (II) and oxidant
    dosage, Chem. Eng. J., 162 (2010) 257–265. 
-  H. Lin, H. Zhang, L. Hou, Degradation of CI Acid Orange
    7 in aqueous solution by a novel electro/Fe3O4/PDS process,
    J. Hazard. Mater., 276 (2014) 182–191. 
-  K. Godini, G. Azarian, D. Nematollahi, A. Rahmani,
    H. Zolghadrnasab, Electrochemical treatment of poultry
    slaughterhouse
    wastewater using iron and aluminium
    electrodes, Res. J. Chem. Environ., 16 (2012) 98–103. 
-  S. Farhadi, B. Aminzadeh, A. Torabian, V. Khatibikamal, M.A.
    Fard, Comparison of COD removal from pharmaceutical
    wastewater by electrocoagulation, photoelectrocoagulation,
    peroxi-electrocoagulation and peroxi-photoelectrocoagulation
    processes, J. Hazard. Mater., 219 (2012) 35–42. 
-  E. Bazrafshan, H. Biglari, A.H. Mahvi, Humic acid removal
    from aqueous environments by electrocoagulation process
    using iron electrodes, E-J. Chem., 9 (2012) 2453–2461. 
-  W. Yang, G. Liu, Y. Chen, D. Miao, Q. Wei, H. Li, L. Ma, K. Zhou,
    L. Liu, Z. Yu, Persulfate enhanced electrochemical oxidation
    of highly toxic cyanide-containing organic wastewater using
    boron-doped diamond anode, Chemosphere, 252 (2020)
    126499. 
-  F. Sepyani, R.D.C. Soltani, S. Jorfi, H. Godini, M. Safari,
    Implementation of continuously electro-generated Fe3O4
    nanoparticles for activation of persulfate to decompose
    amoxicillin antibiotic in aquatic media: UV254 and ultrasound
    intensification, J. Environ. Manage., 224 (2018) 315–326. 
-  A.R. Rahmani, H. Rezaeivahidian, M. Almasi, A. Shabanlo,
    H. Almasi, A comparative study on the removal of phenol from
    aqueous solutions by electro–Fenton and electro–persulfate
    processes using iron electrodes, Res. Chem. Intermed., 42 (2016)
    1441–1450. 
-  J. Liu, S. Zhong, Y. Song, B. Wang, F. Zhang, Degradation of
    tetracycline hydrochloride by electro-activated persulfate
    oxidation, J. Electroanal. Chem., 809 (2018) 74–79. 
-  H. Lin, J. Wu, H. Zhang, Degradation of clofibric acid in
    aqueous solution by an EC/Fe3+/PMS process, Chem. Eng. J.,
    244 (2014) 514–521. 
-  Y. Long, Y. Feng, X. Li, N. Suo, H. Chen, Z. Wang, Y. Yu, Removal
    of diclofenac by three-dimensional electro-Fenton-persulfate
    (3D electro-Fenton-PS), Chemosphere, 219 (2019) 1024–1031. 
-  J. Monteagudo, A. Durán, R. González, A. Expósito, In situ
    chemical oxidation of carbamazepine solutions using persulfate
    simultaneously activated by heat energy, UV light, Fe2+
    ions, and H2O2, Appl. Catal. B, 176 (2015) 120–129. 
-  M. Keramati, B. Ayati, Petroleum wastewater treatment and
    optimization of effective parameters using electrocoagulation
    process, Modares Civil Eng. J., 18 (2019) 177–187. 
-  M. AhmadiMoghadam, H. Amiri, Investigation of TOC removal
    from industrial wastewaters using electrocoagulation process,
    Iran. J. Health Environ., 3 (2010) 185–194. 
-  A. Ghalwa, M. Nasser, N. Farhat, Removal of abamectin
    pesticide by electrocoagulation process using stainless steel and
    iron electrodes, J. Environ. Anal. Chem., 2 (2015) 134. 
-  G. Chen, Electrochemical technologies in wastewater treatment,
    Sep. Purif. Technol., 38 (2004) 11–41. 
-  G.-D. Fang, D.D. Dionysiou, Y. Wang, S.R. Al-Abed, D.-M.
    Zhou, Sulfate radical-based degradation of polychlorinated
    biphenyls: effects of chloride ion and reaction kinetics, J.
    Hazard. Mater., 227 (2012) 394–401. 
-  R.S. Magazinovic, B.C. Nicholson, D.E. Mulcahy, D.E. Davey,
    Bromide levels in natural waters: its relationship to levels of
    both chloride and total dissolved solids and the implications
    for water treatment, Chemosphere, 57 (2004) 329–335. 
-  H. Shemer, K.G. Linden, Degradation and by-product formation
    of diazinon in water during UV and UV/H2O2 treatment,
    J. Hazard. Mater., 136 (2006) 553–559. 
-  Y.Q. Zhang, W.L. Huang, D.E. Fennell, In situ chemical
    oxidation of aniline by persulfate with iron(II) activation at
    ambient temperature, Chin. Chem. Lett., 21 (2010) 911–913. 
-  J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial,
    P. Drogui, J. Naja, Electrocoagulation process in water
    treatment: a review of electrocoagulation modeling approaches,
    Desalination, 404 (2017) 1–21. 
-  V. Khandegar, A.K. Saroha, Electrocoagulation for the treatment
    of textile industry effluent–a review, J. Environ. Manage.,
    128 (2013) 949–963. 
-  J. de Oliveira Silva, G. Rodrigues Filho, C. da Silva Meireles,
    S.D. Ribeiro, J.G. Vieira, C.V. da Silva, D.A. Cerqueira,
    Thermal analysis and FTIR studies of sewage sludge
    produced in treatment plants. The case of sludge in the city
    of Uberlândia-MG, Brazil, Thermochim. Acta, 528 (2012) 72–75. 
-  H. Zhao, D. Zhang, P. Du, H. Li, C. Liu, Y. Li, H. Cao,
    J.C. Crittenden, Q. Huang, A combination of electro-enzymatic
    catalysis and electrocoagulation for the removal of endocrine
    disrupting chemicals from water, J. Hazard. Mater., 297 (2015)
    269–277. 
-  P. Song, Z. Yang, H. Xu, J. Huang, X. Yang, L. Wang, Investigation
    of influencing factors and mechanism of antimony and
    arsenic removal by electrocoagulation using Fe–Al electrodes,
    Ind. Eng. Chem. Res., 53 (2014) 12911–12919. 
-  M. Nasrullah, L. Singh, S. Krishnan, M. Sakinah, A. Zularisam,
    Electrode design for electrochemical cell to treat palm oil
    mill effluent by electrocoagulation process, Environ. Technol.
    Innov., 9 (2018) 323–341. 
-  S. Irki, D. Ghernaout, M.W. Naceur, A. Alghamdi, M. Aichouni,
    Decolorizing methyl orange by Fe-electrocoagulation
    process—a mechanistic insight, Int. J. Environ. Chem.,
    2 (2018) 18.