References

  1. J. Jin, Z. Yang, W. Xiong, Y. Zhou, R. Xu, Y. Zhang, J. Cao, X. Li, C. Zhou, Cu and Co nanoparticles co-doped MIL-101 as a novel adsorbent for efficient removal of tetracycline from aqueous solutions, Sci. Total Environ., 650 (2019) 408–418.
  2. M. Malakootian, H. Mahdizadeh, A. Dehdarirad, M. Amiri Gharghani, Photocatalytic ozonation degradation of ciprofloxacin using ZnO nanoparticles immobilized on the surface of stones, J. Dispersion Sci. Technol., 40 (2019) 846–854.
  3. R. Li, Y. Zhang, C.C. Lee, L. Liu, Y. Huang, Hydrophilic interaction chromatography separation mechanisms of tetracyclines on amino-bonded silica column, J. Sep. Sci., 34 (2011) 1508–1516.
  4. A. Önal, Overview on liquid chromatographic analysis of tetracycline residues in food matrices, Food Chem., 127 (2011) 197–203.
  5. R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 11 (2013) 209–227.
  6. F. Hernández, J.V. Sancho, M. Ibáñez, C. Guerrero, Antibiotic residue determination in environmental waters by LC-MS, TrAC, Trends Anal. Chem., 26 (2007) 466–485.
  7. J.J. López-Peñalver, M. Sánchez-Polo, C.V. Gómez-Pacheco, J. Rivera-Utrilla, Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes, J. Chem. Technol. Biotechnol., 85 (2010) 1325–1333.
  8. V. Andreu, P. Vazquez-Roig, C. Blasco, Y. Picó, Determination of tetracycline residues in soil by pressurized liquid extraction and liquid chromatography tandem mass spectrometry, Anal. Bioanal. Chem., 394 (2009) 1329–1339.
  9. F. Liu, G.-G. Ying, R. Tao, J.-L. Zhao, J.-F. Yang, L.-F. Zhao, Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities, Environ. Pollut., 157 (2009) 1636–1642.
  10. A.L. Spongberg, J.D. Witter, Pharmaceutical compounds in the wastewater process stream in Northwest Ohio, Sci. Total Environ., 397 (2008) 148–157.
  11. J. Gomes, R. Costa, R.M. Quinta-Ferreira, R.C. Martins, Application of ozonation for pharmaceuticals and personal care products removal from water, Sci. Total Environ., 586 (2017) 265–283.
  12. W. Yang, Y. Wu, L. Zhang, J. Jiang, L. Feng, Removal of five selected pharmaceuticals by coagulation in the presence of dissolved humic acids and kaolin, Desal. Water Treat., 54 (2015) 1134–1140.
  13. E. Hapeshi, A. Achilleos, M.I. Vasquez, C. Michael, N.P. Xekoukoulotakis, D. Mantzavinos, D. Kassinos, Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions, Water Res., 44 (2010) 1737–1746.
  14. M. Malakootian, M. Khatami, H. Mahdizadeh, A. Nasiri, M. Amiri Gharaghani, A study on the photocatalytic degradation of p-Nitroaniline on glass plates by thermoimmobilized ZnO nanoparticle, Inorg. Nano-Metal Chem., 50 (2020) 124–135.
  15. M. Malakootian, A. Nasiri, A.N. Alibeigi, H. Mahdizadeh, M.A. Gharaghani, Synthesis and stabilization of ZnO nanoparticles on a glass plate to study the removal efficiency of acid red 18 by hybrid advanced oxidation process (ultraviolet/ZnO/ultrasonic), Desal. Water Treat., 170 (2019) 325–336.
  16. M. Malakootian, A. Nasiri, M. Amiri Gharaghani, Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate, Chem. Eng. Commun., 207 (2020) 56–72.
  17. M. Malakootian, A. Nasiri, A. Asadipour, M. Faraji, E. Kargar, A facile and green method for synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin removal from aqueous media, MethodsX, 6 (2019) 1575–1580.
  18. M. Malakootian, A. Nasiri, A. Asadipour, E. Kargar, Facile and green synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin degradation from aqueous media, Process Saf. Environ. Prot., 129 (2019) 138–151.
  19. M. Malakootian, N. Olama, A. Nasiri, Photocatalytic degradation of metronidazole from aquatic solution by TiO2-doped Fe3+ nano-photocatalyst, Int. J. Environ. Sci. Technol., 16 (2019) 4275–4284.
  20. A. Nasiri, F. Tamaddon, M.H. Mosslemin, M. Faraji, A microwave assisted method to synthesize nanoCoFe2O4@methyl cellulose as a novel metal-organic framework for antibiotic degradation, MethodsX, 6 (2019) 1557–1563.
  21. A. Nasiri, F. Tamaddon, M.H. Mosslemin, M.A. Gharaghani, A. Asadipour, New magnetic nanobiocomposite CoFe2O4@methycellulose: facile synthesis, characterization, and photocatalytic degradation of metronidazole, J. Mater. Sci.: Mater. Electron., 30 (2019) 8595–8610.
  22. F. Tamaddon, M.H. Mosslemin, A. Asadipour, M.A. Gharaghani, A. Nasiri, Microwave-assisted preparation of ZnFe2O4@methyl cellulose as a new nano-biomagnetic photocatalyst for photodegradation of metronidazole, Int. J. Biol. Macromol., 154 (2020) 1036–1049.
  23. F. Tamaddon, A. Nasiri, G. Yazdanpanah, Photocatalytic degradation of ciprofloxacin using CuFe2O4@methyl cellulose based magnetic nanobiocomposite, MethodsX, 7 (2020) 100764, https://doi.org/10.1016/j.mex.2019.12.005.
  24. R.S. Bangari, N. Sinha, Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution, J. Mol. Liq., 293 (2019) 111376.
  25. N. Javid, A. Nasiri, M. Malakootian, Removal of nonylphenol from aqueous solutions using carbonized date pits modified with ZnO nanoparticles, Desal. Water Treat., 141 (2019) 140–148.
  26. M. Malakootian, M. Hashemi, A. Toolabi, A. Nasiri, Investigation of nickel removal using poly(amidoamine) generation 4 dendrimer (PAMAM G4) from aqueous solutions, J. Eng. Res., 6 (2018).
  27. M. Malakootian, A. Nasiri, H. Mahdizadeh, Preparation of CoFe2O4/activated carbon@chitosan as a new magnetic nanobiocomposite for adsorption of ciprofloxacin in aqueous solutions, Water Sci. Technol., 78 (2018) 2158–2170.
  28. M. Malakootian, A. Nasiri, H. Mahdizadeh, Metronidazole adsorption on CoFe2O4/activated carbon@chitosan as a new magnetic biocomposite: modelling, analysis, and optimization by response surface methodology, Desal. Water Treat., 164 (2019) 215–227.
  29. M. Dehghani, M. Nozari, A. Fakhraei Fard, M. Ansari Shiri, N. Shamsedini, Direct red 81 adsorption on iron filings from aqueous solutions; kinetic and isotherm studies, Environ. Technol., 40 (2019) 1705–1713.
  30. M. Dehghani, M. Ansari Shiri, S. Shahsavani, N. Shamsedini, M. Nozari, Removal of Direct Red 81 dye from aqueous solution using neutral soil containing copper, Desal. Water Treat., 86 (2017) 213–220.
  31. M. Dehghani, M. Nozari, I. Golkari, N. Rostami, M.A. Shiri, Adsorption and kinetic studies of hexavalent chromium by dehydrated Scrophularia striata stems from aqueous solutions, Desal. Water Treat., 125 (2018) 81–92.
  32. M. Maqbool, H.N. Bhatti, S. Sadaf, M.M. AL-Anazy, M. Iqbal, Biocomposite of polyaniline and sodium alginate with Oscillatoria biomass: a potential adsorbent for the removal of basic blue 41, J. Mater. Res. Technol., 9 (2020) 14729–14741.
  33. S. Nausheen, H.N. Bhatti, K. Arif, J. Nisar, M. Iqbal, Native clay, MnFe2O4/clay composite and bio-composite efficiency for the removal of synthetic dye from synthetic solution: column versus batch adsorption studies, Desal. Water Treat., 187 (2020) 219–231.
  34. H.N. Bhatti, Y. Safa, S.M. Yakout, O.H. Shair, M. Iqbal, A. Nazir, Efficient removal of dyes using carboxymethyl cellulose/ alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies, Int. J. Biol. Macromol., 150 (2020) 861–870.
  35. S. Noreen, H.N. Bhatti, M. Iqbal, F. Hussain, F.M. Sarim, Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye, Int. J. Biol. Macromol., 147 (2020) 439–452.
  36. C. Gérente, P.C. Du Mesnil, Y. Andrès, J.-F. Thibault, P. Le Cloirec, Removal of metal ions from aqueous solution on low cost natural polysaccharides: sorption mechanism approach, React. Funct. Polym., 46 (2000) 135–144.
  37. A.B. Nasr, K. Walha, C. Charcosset, R.B. Amar, Removal of fluoride ions using cuttlefish bones, J. Fluorine Chem., 132 (2011) 57–62.
  38. M. Keshtkar, S. Dobaradarana, I. Nabipour, A.H. Mahvi, F.F. Ghasemi, Z. Ahmadi, M. Heydari, Isotherm and kinetic studies on fluoride biosorption from aqueous solution by using cuttlebone obtained from the Persian Gulf, Fluoride, 49 (2016) 343–351.
  39. H. Khazri, I. Ghorbel-Abid, R. Kalfat, M. Trabelsi-Ayadi, Removal of drugs by cuttlefish bone powder: equilibrium, kinetics and thermodynamic study, J. Environ. Anal. Chem., 3 (2016) 2.
  40. P. Wang, X. Wang, S. Yu, Y. Zou, J. Wang, Z. Chen, N.S. Alharbi, A. Alsaedi, T. Hayat, Y. Chen, Silica coated Fe3O4 magnetic nanospheres for high removal of organic pollutants from wastewater, Chem. Eng. J., 306 (2016) 280–288.
  41. N.M. Mohammadi Amini, E. Dehghanifard, Evaluation the efficiency of magnetic-metallic chitosan nanocomposite adsorbent in the removal of tetracycline antibiotic from aqueous solutions, J. Environ. Health Eng., 6 (2019) 356–374.
  42. S.T. Danalıoğlu, Ş.S. Bayazit, Ö.K. Kuyumcu, M.A. Salam, Efficient removal of antibiotics by a novel magnetic adsorbent: magnetic activated carbon/chitosan (MACC) nanocomposite, J. Mol. Liq., 240 (2017) 589–596.
  43. S.T. Danalıoğlu, Ö.K. Kuyumcu, M.A. Salam, Ş.S. Bayazit, Chitosan grafted SiO2–Fe3O4 nanoparticles for removal of antibiotics from water, Environ. Sci. Pollut. Res., 25 (2018) 36661–36670.
  44. B. Yu, Y. Bai, Z. Ming, H. Yang, L. Chen, X. Hu, S. Feng, S.-T. Yang, Adsorption behaviors of tetracycline on magnetic graphene oxide sponge, Mater. Chem. Phys., 198 (2017) 283–290.
  45. V. Arya, L. Philip, Adsorption of pharmaceuticals in water using Fe3O4 coated polymer clay composite, Microporous Mesoporous Mater., 232 (2016) 273–280.
  46. Y. Lin, S. Xu, J. Li, Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles, Chem. Eng. J., 225 (2013) 679–685.
  47. J. Yu, W. Xiong, X. Li, Z. Yang, J. Cao, M. Jia, R. Xu, Y. Zhang, Functionalized MIL-53 (Fe) as efficient adsorbents for removal of tetracycline antibiotics from aqueous solution, Microporous Mesoporous Mater., 290 (2019) 109642.
  48. J. Che, J. Wan, X. Huang, R. Wu, K. Liang, Pretreatment of piggery digestate wastewater by ferric-carbon micro-electrolysis under alkalescence condition, Korean J. Chem. Eng., 34 (2017) 2397–2405.
  49. H. Zhou, Y. Shen, P. Lv, J. Wang, J. Fan, Degradation of 1-butyl- 3-methylimidazolium chloride ionic liquid by ultrasound and zero-valent iron/activated carbon, Sep. Sci. Technol., 104 (2013) 208–213.
  50. M. Behloul, H. Grib, N. Drouiche, N. Abdi, H. Lounici, N. Mameri, Removal of malathion pesticide from polluted solutions by electrocoagulation: modeling of experimental results using response surface methodology, Sep. Sci. Technol., 48 (2013) 664–672.
  51. S. Demim, N. Drouiche, A. Aouabed, S. Semsari, CCD study on the ecophysiological effects of heavy metals on Lemna gibba, Ecol. Eng., 57 (2013) 302–313.
  52. S.K. Behera, H. Meena, S. Chakraborty, B. Meikap, Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal, Int. J. Min. Sci. Technol., 28 (2018) 621–629.
  53. H. Amiri, R. Nabizadeh, S.S. Martinez, S.J. Shahtaheri, K. Yaghmaeian, A. Badiei, S. Nazmara, K. Naddafi, Response surface methodology modeling to improve degradation of Chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor, Ecotoxicol. Environ. Saf., 147 (2018) 919–925.
  54. S. Ahmadzadeh, A. Asadipour, M. Pournamdari, B. Behnam, H.R. Rahimi, M. Dolatabadi, Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: optimization and modelling through response surface methodology, Process Saf. Environ. Prot., 109 (2017) 538–547.
  55. M. Leili, M. Fazlzadeh, A. Bhatnagar, Green synthesis of nanozero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions, Environ. Technol., 39 (2018) 1158–1172.
  56. M. Dehghani, M. Nozari, I. Golkari, N. Rostami, M. Ansari Shiri, Adsorption of mercury(II) from aqueous solutions using dried Scrophularia striata stems: adsorption and kinetic studies, Desal. Water Treat., 203 (2020) 279–291.
  57. K. Kaneko, Determination of pore size and pore size distribution: 1. Adsorbents and catalysts, J. Membr. Sci., 96 (1994) 59–89.
  58. S. Dobaradaran, I. Nabipour, M. Keshtkar, F.F. Ghasemi, T. Nazarialamdarloo, F. Khalifeh, M. Poorhosein, M. Abtahi, R. Saeedi, Self-purification of marine environments for heavy metals: a study on removal of lead(II) and copper(II) by cuttlebone, Water Sci. Technol., 75 (2017) 474–481.
  59. M. Dehvari, M.H. Ehrampoush, M.T. Ghaneian, B. Jamshidi, M. Tabatabaee, Adsorption kinetics and equilibrium studies of reactive red 198 dye by cuttlefish bone powder, Iran J. Chem. Chem. Eng., 36 (2017) 143–151.
  60. J. He, F. Ni, A. Cui, X. Chen, S. Deng, F. Shen, C. Huang, G. Yang, C. Song, J. Zhang, D. Tian, L. Long, Y. Zhu, L. Luo, New insight into adsorption and co-adsorption of arsenic and tetracycline using a Y-immobilized graphene oxidealginate hydrogel: adsorption behaviours and mechanisms, Sci. Total Environ., 701 (2020) 134363, https://doi.org/10.1016/j. scitotenv.2019.134363.
  61. M. Foroughi, M.H.A. Azqhandi, S. Kakhki, Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI-β-CD nanocomposite: modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN), J. Hazard. Mater., 388 (2020) 121769.
  62. A.A. Maryoosh, M.A. Abed, A.A. Waheb, R.F. Abbas, H.K. Hami, Isotherm and pH effect studies of tetracycline drug removal from aqueous solution using cobalt oxide surface, Al-Nahrain J. Sci., 22 (2019) 12–18.
  63. A.A. Mohammed, S.L. Kareem, Adsorption of tetracycline fom wastewater by using Pistachio shell coated with ZnO nanoparticles: equilibrium, kinetic and isotherm studies, Alexandria Eng. J., 58 (2019) 917–928.
  64. G. Yang, Q. Gao, S. Yang, S. Yin, X. Cai, X. Yu, S. Zhang, Y. Fang, Strong adsorption of tetracycline hydrochloride on magnetic carbon-coated cobalt oxide nanoparticles, Chemosphere, 239 (2020) 124831.
  65. H. Zhu, T. Chen, J. Liu, D. Li, Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/ calcium alginate composite fibers, RSC Adv., 8 (2018) 2616–2621.
  66. D. Balarak, Y. Mahdavi, F.K. Mostafapour, Application of alumina-coated carbon nanotubes in removal of tetracycline from aqueous solution, J. Pharm. Res. Int., 12 (2016) 1–11.
  67. U.A. Guler, M. Sarioglu, Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies, J. Environ. Health Sci. Eng., 12 (2014) 79.
  68. C. Zhao, J. Ma, Z. Li, H. Xia, H. Liu, Y. Yang, Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants, RSC Adv., 10 (2020) 5066–5076.
  69. J. Wei, Y. Liu, J. Li, Y. Zhu, H. Yu, Y. Peng, Adsorption and co-adsorption of tetracycline and doxycycline by one-step synthesized iron loaded sludge biochar, Chemosphere, 236 (2019) 124254, https://doi.org/10.1016/j.chemosphere.2019.06.224.
  70. Y. Dai, J. Li, D. Shan, Adsorption of tetracycline in aqueous solution by biochar derived from waste Auricularia auricula dregs, Chemosphere, 238 (2020) 124432, https://doi. org/10.1016/j.chemosphere.2019.124432.
  71. V. Rizzi, D. Lacalamita, J. Gubitosa, P. Fini, A. Petrella, R. Romita, A. Agostiano, J.A. Gabaldón, M.I.F. Gorbe, T. Gómez-Morte, Removal of tetracycline from polluted water by chitosan-olive pomace adsorbing films, Sci. Total Environ., 693 (2019) 133620.
  72. V.T. Nguyen, T.B. Nguyen, C.W. Chen, C.M. Hung, C. Huang, C.D. Dong, Cobalt-impregnated biochar (Co-SCG) for heterogeneous activation of peroxymonosulfate for removal of tetracycline in water, Bioresour. Technol., 292 (2019) 121954.
  73. J. Liu, B. Zhou, H. Zhang, J. Ma, B. Mu, W. Zhang, A novel Biochar modified by Chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution, Bioresour. Technol., 294 (2019) 122152.
  74. W. Xiong, Z. Zeng, G. Zeng, Z. Yang, R. Xiao, X. Li, J. Cao, C. Zhou, H. Chen, M. Jia, Metal-organic frameworks derived magnetic carbon-αFe/Fe3C composites as a highly effective adsorbent for tetracycline removal from aqueous solution, Chem. Eng. J., 374 (2019) 91–99.
  75. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  76. W. Xiong, Z. Zeng, X. Li, G. Zeng, R. Xiao, Z. Yang, Y. Zhou, C. Zhang, M. Cheng, L. Hu, Multi-walled carbon nanotube/amino-functionalized MIL-53 (Fe) composites: remarkable adsorptive removal of antibiotics from aqueous solutions, Chemosphere, 210 (2018) 1061–1069.