References

  1. Z. Sun, S. Wang, Q. Zhou, S.e. Hui, Experimental study on desulfurization efficiency and gas–liquid mass transfer in a new liquid-screen desulfurization system, Appl. Energy, 87 (2010) 1505–1512.
  2. L. Zhou, Y. Liu, L.Y. Luo, Z.L. Yuan, L.J. Yang, H. Wu, Improving the removal of fine particles by chemical agglomeration during the limestone-gypsum wet flue gas desulfurization process, J. Environ. Sci. China, 80 (2019) 35–44.
  3. S.W. Pan, N. Tang, J.J. Hu, J.F. Kuang, M. Qi, K. Ye, Experimental study on the spray of mercury removal performance of flue gas desulfurization wastewater, Adv. Mater. Res., 807–809 (2013) 1483–1488.
  4. G. Riedel, C. Voigt, H. Werner, U. Heubner, Qualification of metallic materials for evaporation of waste water from flue gas desulfurization plants, Mater. Corros., 50 (1999) 452–462.
  5. R.C. Peng, P. Yu, Y.B. Luo, Coke plant wastewater posttreatment by Fenton and electro-Fenton processes, Environ. Eng. Sci., 34 (2017) 89–95.
  6. R.C. Peng, H.L. Zhang, L. Gui, Z.K. Wu, P. Yu, Y.B. Luo, Facile synthesis of MnO2@cellulose composite film, Environ. Eng. Sci., 36 (2019) 583–588.
  7. C.C. Dong, J.H. Ji, B. Shen, M.Y. Xing, J.L. Zhang, Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(VI) and remediation of phenol, Environ. Sci. Technol., 52 (2018) 11297–11308.
  8. M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as low-cost adsorbents in water and wastewater treatment, Ind. Eng. Chem. Res., 50 (2011) 13589–13613.
  9. J.S. Chen, J.D. Zhang, Y.Z. Xian, X.Y. Ying, M.C. Liu, L.T. Jin, Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research, Water Res., 39 (2005) 1340–1346.
  10. L. Gui, J.H. Peng, P. Li, R.C. Peng, P. Yu, Y.B. Luo, Electrochemical degradation of dye on TiO2 nanotube array constructed anode, Chemosphere, 235 (2019) 1189–1196.
  11. A. Shokri, The treatment of spent caustic in the wastewater of olefin units by ozonation followed by electrocoagulation process, Desal. Water Treat., 111 (2018) 173–182.
  12. L. Gui, H.Y. Jin, Y. Zheng, R.C. Peng, Y.B. Luo, P. Yu, Electrochemical degradation of bisphenol A using different modified anodes based on titanium in aqueous solution, Int. J. Electrochem. Sci., 13 (2018) 7141–7156.
  13. K. Chiang, T.M. Lim, L. Tsen, C.C. Lee, Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2, Appl. Catal., A, 261 (2004) 225–237.
  14. L. Ciriaco, C. Anjo, M.J. Pacheco, A. Lopes, J. Correia, Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes, Electrochim. Acta, 54 (2009) 1464–1472.
  15. Y.H. Cui, X.Y. Li, G.H. Chen, Electrochemical degradation of bisphenol A on different anodes, Water Res., 43 (2009) 1968–1976.
  16. S. Neodo, D. Rosestolato, S. Ferro, A. De Battisti, On the electrolysis of dilute chloride solutions: influence of the electrode material on Faradaic efficiency for active chlorine, chlorate and perchlorate, Electrochim. Acta, 80 (2012) 282–291.
  17. H. Xu, M. Li, F.M. Wu, J. Zhang, Optimization of Fenton oxidation process for treatment of hexogeon industrial wastewater using response surface methodology, Desal. Water Treat., 55 (2015) 77–85.
  18. A.T. Marshall, A. Herritsch, Understanding how the oxygen evolution reaction kinetics influences electrochemical wastewater oxidation, Electrochim. Acta, 282 (2018) 448–458.
  19. X.Q. Yin, B. Jing, W.J. Chen, J. Zhang, Q. Liu, W. Chen, Study on COD removal mechanism and reaction kinetics of oilfield wastewater, Water Sci. Technol., 76 (2017) 2655–2663.
  20. A. Shokri, A kinetic study and application of electro-Fenton process for the remediation of aqueous environment containing toluene in a batch reactor, Russ. J. Appl. Chem., 90 (2017) 452–457.
  21. F.H. Kamar, F.E. Niamat, A.A.H. Faisal, A.A. Mohammed, A.C. Nechifor, G. Nechifor, Use of artificial neural network for modeling and prediction of reactive red dye removal from wastewater using banana peels bio-sorbent, Rev. Chim., 69 (2018) 1919–1926.
  22. F. Schmitt, R. Banu, I.T. Yeom, K.U. Do, Development of artificial neural networks to predict membrane fouling in an anoxicaerobic membrane bioreactor treating domestic wastewater, Biochem. Eng. J., 133 (2018) 47–58.
  23. A. Shokri, Application of sono–photo-Fenton process for degradation of phenol derivatives in petrochemical wastewater using full factorial design of experiment, Int. J. Ind. Chem., 9 (2018) 295–303.
  24. C.O. Guimaraes, A.B. Franca, G.R.L. Samanamud, E.P. Baston, R.C.Z. Lofrano, C.C.A. Loures, L.L.R. Naves, F.L. Naves, Optimization of treating phenol from wastewater through the TiO2-catalyzed advanced oxidation process and response surface methodology, Environ. Monit. Assess., 191 (2019) 349–362.
  25. Z. Ghasemi, H. Younesi, A.A. Zinatizadeh, Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: optimization of process parameters by response surface methodology, Chemosphere, 159 (2016) 552–564.
  26. X. Zhu, J. Tian, R. Liu, L. Chen, Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology, Sep. Purif. Technol., 81 (2011) 444–450.
  27. E.E. Mitsika, C. Christophoridis, K. Fytianos, Fenton and Fenton-like oxidation of pesticide acetamiprid in water samples: kinetic study of the degradation and optimization using response surface methodology, Chemosphere, 93 (2013) 1818–1825.
  28. A. Shokri, Employing electrocoagulation for the removal of Acid Red 182 in aqueous environment by using Box–Behenken design method, Desal. Water Treat., 115 (2018) 281–287.
  29. S.M.B. Hosseini, N. Fallah, S.J. Royaee, Optimization of photocatalytic degradation of real textile dye house wastewater by response surface methodology, Water Sci. Technol., 74 (2016) 1999–2009.
  30. W.Z. Jiao, L.S. Yu, Z.R. Feng, L. Guo, Y.H. Wang, Y.Z. Liu, Optimization of nitrobenzene wastewater treatment with O3/H2O2 in a rotating packed bed using response surface methodology, Desal. Water Treat., 57 (2016) 19996–20004.
  31. K.D. Xu, J.H. Peng, P. Chen, W.K. Gu, Y.B. Luo, P. Yu, Preparation and characterization of porous Ti/SnO2-Sb2O3/PbO2 electrodes for the removal of chloride ions in water, Processes, 7 (2019) 762–776.
  32. K. Thirugnanasambandham, V. Sivakumar, Optimization of treatment of grey wastewater using electro-Fenton technique – modeling and validation, Process Saf. Environ. Prot., 95 (2015) 60–68.
  33. R.C. Peng, P. Yu, Y.B. Luo, A comparative study of Fenton and electro-Fenton treatment for COD removal from coking industry wastewater, Fresenius Environ. Bull., 25 (2016) 3987–3992.
  34. M. Kobya, S. Delipinar, Treatment of the baker’s yeast wastewater by electrocoagulation, J. Hazard. Mater., 154 (2008) 1133–1140.
  35. A. Akyol, O.T. Can, E. Demirbas, M. Kobya, A comparative study of electrocoagulation and electro-Fenton for treatment of wastewater from liquid organic fertilizer plant, Sep. Purif. Technol., 112 (2013) 11–19.
  36. J. Virkutyte, E. Rokhina, V. Jegatheesan, Optimisation of electro-Fenton denitrification of a model wastewater using a response surface methodology, Bioresour. Technol., 101 (2010) 1440–1446.
  37. L. Cui, G. Li, Y. Li, B. Yang, L. Zhang, Y. Dong, C. Ma, Electrolysis-electrodialysis process for removing chloride ion in wet flue gas desulfurization wastewater (DW): influencing factors and energy consumption analysis, Chem. Eng. Res. Des., 123 (2017) 240–247.