References

  1. M. Mossad, L. Zou, A study of the capacitive deionisation performance under various operational conditions, J. Hazard. Mater., 213–214 (2012) 491–497.
  2. A.D. Khawaji, I.K. Kutubkhanah, J. Wie, Advances in seawater desalination technologies, Desalination, 221 (2008) 47–69.
  3. I.C. Karagiannis, P.G. Soldatos, Water desalination cost literature: review and assessment, Desalination, 223 (2008) 448–456.
  4. K. Walha, R. Ben Amar, L. Firdaous, F. Quéméneur, P. Jaouen, Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison, Desalination, 207 (2007) 95–106.
  5. C. Huyskens, J. Helsen, A.B. de Haan, Capacitive deionization for water treatment: screening of key performance parameters and comparison of performance for different ions, Desalination, 328 (2013) 8–16.
  6. V.G. Gude, N. Nirmalakhandan, S. Deng, Renewable and sustainable approaches for desalination, Renewable Sustainable Energy Rev., 14 (2010) 2641–2654.
  7. M. Nair, D. Kumar, Water desalination and challenges : the Middle East perspective: a review, Des. Water Treat., 51 (2013) 2030–2040.
  8. J. Lauria, Using water treatment to tackle the environmental footprint issue, Filtr. Sep., 45 (2008) 20–23.
  9. G.R. Lashkaripour, M. Zivdar, Desalination of brackish groundwater in Zahedan city in Iran, Desalination, 177 (2005) 1–5.
  10. K.B. Hatzell, E. Iwama, A. Ferris, B. Daffos, K. Urita, T. Tzedakis, F. Chauvet, P.-L. Taberna, Y. Gogotsi, P. Simon, Capacitive deionization concept based on suspension electrodes without ion exchange membranes, Electrochem. Commun., 43 (2014) 18–21.
  11. W. Tang, P. Kovalsky, B. Cao, T.D. Waite, Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization, Water Res., 99 (2016) 112–121.
  12. A. Thamilselvan, A.S. Nesaraj, M. Noel, Review on carbonbased electrode materials for application in capacitive deionization process, Int. J. Environ. Sci. Technol., 13 (2016) 2961–2976.
  13. I. Muñoz, A.R. Fernández-Alba, Reducing the environmental impacts of reverse osmosis desalination by using brackish groundwater resources, Water Res., 42 (2008) 801–811.
  14. F.A. AlMarzooqi, A.A. Al Ghaferi, I. Saadat, N. Hilal, Application of capacitive deionisation in water desalination: a review, Desalination, 342 (2014) 3–15.
  15. Y. Gendel, A.K.E. Rommerskirchen, O. David, M. Wessling, Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology, Electrochem. Commun., 46 (2014) 152–156.
  16. P.M. Biesheuvel, R. Zhao, S. Porada, A. van der Wal, Theory of membrane capacitive deionization including the effect of the electrode pore space, J. Colloid Interface Sci., 360 (2011) 239–248.
  17. T. Kim, J. Yoon, Relationship between capacitance of activated carbon composite electrodes measured at a low electrolyte concentration and their desalination performance in capacitive deionization, J. Electroanal. Chem., 704 (2013) 169–174.
  18. S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
  19. B. Jia, W. Zhang, Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review, Nanoscale Res. Lett., 11 (2016) 1–25.
  20. D. He, C.E. Wong, W. Tang, P. Kovalsky, T.D. Waite, Faradaic reactions in water desalination by batch-mode capacitive deionization, Environ. Sci. Technol. Lett., 3 (2016) 222–226.
  21. L. Zou, G. Morris, D. Qi, Using activated carbon electrode in electrosorptive deionisation of brackish water, Desalination, 225 (2008) 329–340.
  22. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8 (2015) 2296–2319.
  23. Y. Liu, L. Pan, X. Xu, T. Lu, Z. Sun, D.H.C. Chua, Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes, Electrochim. Acta, 130 (2014) 619–624.
  24. G. Wang, B. Qian, Q. Dong, J. Yang, Z. Zhao, J. Qiu, Comment on “Carbon nanotube/graphene composite for enhanced capacitive deionization performance” by Y. Wimalasiri and L. Zou, Sep. Purif. Technol., 103 (2013) 216–221.
  25. S.J. Seo, H. Jeon, J.K. Lee, G.Y. Kim, D. Park, H. Nojima, J. Lee, S.H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44 (2010) 2267–2275.
  26. M. Faraday, Experimental researches in electricity, Sixth Series, Philos. Trans. R. Soc. London, 124 (1834) 55–76.
  27. M. Faraday, Experimental researches in electricity, Third series, Philos. Trans. R. Soc. London, 123 (1833) 23–54.
  28. B.B. Arnold, G.W. Murphy, Studies on the electrochemistry of carbon and chemically-modified carbon surfaces, J. Phys. Chem., 65 (1961) 135–138.
  29. G.W. Murphy, D.D. Caudle, Mathematical theory of electrochemical demineralization in flowing systems, Electrochim. Acta, 12 (1967) 1655–1664.
  30. Y. Oren, A. Soffer, Water desalting by means of electrochemical parametric pumping. I. The equilibrium properties of a batch unit cell, J. Appl. Electrochem., 13 (1983) 473–487.
  31. A. Soffer, M. Folman, The electrical douoble layer of high surface porous carbon electrode, J. Electroanal. Chem. Interfacial Electrochem., 38 (1972) 25–43.
  32. Y. Oren, A. Softer, Electrochemical parametric pumping, J. Electrochem. Soc., 125 (1978) 869–875.
  33. J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, Capacitive deionization of NaCI and NaNO3 solutions with carbon aerogel electrodes, J. Electrochem. Soc., 143 (1996) 159–169.
  34. J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, The Use of Capacitive Deionization with Carbon Aerogel Electrodes to Remove Inorganic Contaminants from Water, Low Level Waste Conf., INIS Vol. 26, INIS Issue: 23, 1995.
  35. J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes, J. Appl. Electrochem., 26 (1996) 1007–1018.
  36. T.J. Welgemoed, C.F. Schutte, Capacitive deionization technologyTM: an alternative desalination solution, Desalination, 183 (2005) 327–340.
  37. B. Van Limpt, A. van der Wal, Water and chemical savings in cooling towers by using membrane capacitive deionization, Desalination, 342 (2014) 148–155.
  38. W. Tang, P. Kovalsky, D. He, T.D. Waite, Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization, Water Res., 84 (2015) 342–349.
  39. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review), Desalination, 228 (2008) 10–29.
  40. S. Yang, J. Choi, J. Yeo, S. Jeon, H. Park, D.K. Kim, Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environ. Sci. Technol., 50 (2016) 5892–5899.
  41. J.Y. Lee, S.J. Seo, S.H. Yun, S.H. Moon, Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI), Water Res., 45 (2011) 5375–5380.
  42. P. Liang, X. Sun, Y. Bian, H. Zhang, X. Yang, Y. Jiang, P. Liu, X. Huang, Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode, Desalination, 420 (2017) 63–69.
  43. A. Rommerskirchen, Y. Gendel, M. Wessling, Single module flow-electrode capacitive deionization for continuous water desalination, Electrochem. Commun., 60 (2015) 34–37.
  44. C. Fan, S.Y. Liou, C.-H. Hou, Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode, Chemosphere, 184 (2017) 924–931.
  45. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water Res., 42 (2008) 4923–4928.
  46. D. Zhang, L. Shi, J. Fang, K. Dai, X. Li, Preparation and desalination performance of multiwall carbon nanotubes, Mater. Chem. Phys., 97 (2006) 415–419.
  47. D. Zhang, L. Shi, J. Fang, K. Dai, J. Liu, Influence of carbonization of hot-pressed carbon nanotube electrodes on removal of NaCl from saltwater solution, Mater. Chem. Phys., 96 (2006) 140–144.
  48. M. Ryoo, G. Seo, Improvement in capacitive deionization function of activated carbon cloth by titania modification, Water Res., 37 (2003) 1527–1534.
  49. M. Alam, S.A. Sadrnejad, M.R. Ghaani, Performance evaluation of optimized carbon xerogel electrode in desalination through flow-electrode capacitive deionization: capacitance optimization by response surface methodology, Des. Water Treat., 145 (2019) 57–69.
  50. M. Alam, S.A. Mirbagheri, M.R. Ghaani, Multi-parameter optimization of the capacitance of carbon xerogel catalyzed by NaOH for application in supercapacitors and capacitive deionization systems, Heliyon, 5 (2019) e01196.
  51. P.M. Biesheuvel, A. Van der Wal, Membrane capacitive deionization, J. Membr. Sci., 346 (2010) 256–262.
  52. M. Andelman, G. Walker, Charge Barrier Flow-Through Capacitor, Patent Number: US6709560B2, 2002.
  53. J.-B. Lee, K.-K. Park, H.-M. Eum, C.-W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196 (2006) 125–134.
  54. B. Qian, G. Wang, Z. Ling, Q. Dong, T. Wu, Z. Xu, Q. Jieshan, Sulfonated graphene as cation-selective coating : a new strategy for high-performance membrane capacitive deionization, Adv. Mater. Interfaces, 2 (2015). https://doi.org/10.1002/admi. 201500372.
  55. T. Wu, G. Wang, Q. Dong, B. Qian, Y. Meng, J. Qiu, Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode, Electrochim. Acta, 176 (2015) 426–433.
  56. X. Su, H.J. Kulik, T.F. Jamison, T.A. Hatton, Anion-selective redox electrodes: electrochemically mediated separation with heterogeneous organometallic interfaces, Adv. Funct. Mater., 26 (2016) 3394–3404.
  57. X. Gao, S. Porada, A. Omosebi, K.L. Liu, P.M. Biesheuvel, J. Landon, Complementary surface charge for enhanced capacitive deionization, Water Res., 92 (2016) 275–282.
  58. I. Cohen, E. Avraham, M. Noked, A. Soffer, D. Aurbach, Enhanced charge efficiency in capacitive deionization achieved by surface-treated electrodes and by means of a third electrode, J. Phys. Chem. C, 115 (2011) 19856–19863.
  59. S. Porada, A. Shrivastava, P. Bukowska, P.M. Biesheuvel, K.C. Smith, Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water, Electrochim. Acta, 255 (2017) 369–378.
  60. P. Liu, H. Wang, T. Yan, J. Zhang, L. Shi, D. Zhang, Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization, J. Mater. Chem. A, 4 (2016) 5303–5313.
  61. X. Gao, A. Omosebi, J. Landon, K. Liu, Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes, Environ. Sci. Technol., 49 (2015) 10920–10926.
  62. T. Kim, C.A. Gorski, B.E. Logan, Low energy desalination using battery electrode deionization, Environ. Sci. Technol. Lett., 4 (2017) 444–449.
  63. K.C. Smith, R. Dmello, Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-intercalation: porous-electrode modeling, J. Electrochem. Soc., 163 (2016) A530–A539.
  64. A.C. Arulrajan, D.L. Ramasamy, M. Sillanpää, A. van der Wal, P.M. Biesheuvel, S. Porada, J.E. Dykstra, Exceptional water desalination performance with anion-selective electrodes, Adv. Mater., 31 (2019) 1–5.
  65. K.B. Hatzell, M.C. Hatzell, K.M. Cook, M. Boota, G.M. Housel, A. McBride, E.C. Kumbur, Y. Gogotsi, Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization, Environ. Sci. Technol., 49 (2015) 3040–3047.
  66. S. Jeon, H. Park, J. Yeo, S. Yang, C.H. Cho, M.H. Han, D.K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy Environ. Sci., 6 (2013) 1471–1475.
  67. M.C. Hatzell, K.B. Hatzell, B.E. Logan, Using flow electrodes in multiple reactors in series for continuous energy generation from capacitive mixing, Environ. Sci. Technol. Lett., 1 (2014) 474–478.
  68. P. Nativ, Y. Badash, Y. Gendel, New insights into the mechanism of flow-electrode capacitive deionization, Electrochem. Commun., 76 (2017) 24–28.
  69. S. Porada, D. Weingarth, H.V.M. Hamelers, M. Bryjak, V. Presser, P.M. Biesheuvel, Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation, J. Mater. Chem. A, 2 (2014) 9313–9321.
  70. A. Rommerskirchen, C.J. Linnartz, D. Mueller, L. Willenberg, M. Wessling, Energy recovery and process design in continuous flow-electrode capacitive deionization processes, ACS Sustainable Chem. Eng., 6 (2018) 13007–13015.
  71. M. Mossad, W. Zhang, L. Zou, Using capacitive deionisation for inland brackish groundwater desalination in a remote location, Desalination, 308 (2013) 154–160.
  72. S. Yang, H. Park, J. Yoo, H. Kim, J. Choi, M.H. Han, D.K. Kim, Plate-shaped graphite for improved performance of flow-electrode capacitive deionization, J. Electrochem. Soc., 164 (2017) E480–E488.
  73. K.Y. Choo, K.S. Lee, M.H. Han, D.K. Kim, Study on the electrochemical characteristics of porous ceramic spacers in a capacitive deionization cell using slurry electrodes, J. Electroanal. Chem., 835 (2019) 262–272.
  74. E.N. Guyes, A.N. Shocron, A. Simanovski, P.M. Biesheuvel, M.E. Suss, A one-dimensional model for water desalination by flow-through electrode capacitive deionization, Desalination, 415 (2017) 8–13.
  75. S. Jeon, J. Yeo, S. Yang, J. Choi, D.K. Kim, Ion storage and energy recovery of a flow-electrode capacitive deionization process, J. Mater. Chem. A, 2 (2014) 6378–6383.
  76. H. Park, J. Choi, S. Yang, S.J. Kwak, S. Jeon, M.H. Han, D.K. Kim, Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization, RSC Adv., 6 (2016) 69720–69727.
  77. S. Yang, S. Jeon, H. Kim, J. Choi, J.-G. Yeo, H. Park, D.K. Kim, Stack design and operation for scaling up the capacity of flowelectrode capacitive deionization technology, ACS Sustainable Chem. Eng., 4 (2016) 4174–4180.
  78. K.B. Hatzell, M. Boota, E.C. Kumbur, Y. Gogotsi, Flowable conducting particle networks in redox-active electrolytes for grid energy storage, J. Electrochem. Soc., 162 (2015) A5007– A5012. https://doi.org/10.1149/2.0011505jes.
  79. J. Ma, C. He, D. He, C. Zhang, T.D. Waite, Analysis of capacitive and electrodialytic contributions to water desalination by flow- electrode CDI, Water Res., 144 (2018) 296–303.
  80. Y. Bian, X. Yang, P. Liang, Y. Jiang, C. Zhang, X. Huang, Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon, Water Res., 85 (2015) 371–376.
  81. T. Xu, Ion exchange membranes: state of their development and perspective, J. Membr. Sci., 263 (2005) 1–29.
  82. C. Klaysom, R. Marschall, S.-H. Moon, B.P. Ladeig, G.Q.M. Lu, L. Wang, Preparation of porous composite ionexchange membranes for desalination application, J. Mater. Chem., 21 (2011) 7401–7409.
  83. C.J. Linnartz, A. Rommerskirchen, M. Wessling, Y. Gendel, Flow-electrode capacitive deionization for double displacement reactions, ACS Sustainable Chem. Eng., 5 (2017) 3906–3912.
  84. A. Rommerskirchen, A. Kalde, C.J. Linnartz, L. Bongers, G. Linz, M. Wessling, Unraveling charge transport in carbon flow-electrodes: performance prediction for desalination applications, Carbon N. Y., 145 (2019) 507–520.
  85. S. Park, J.-H. Choi, Desalination characteristics in a membrane capacitive deionization stack with carbon electrodes connected in series, Sep. Purif. Technol., 209 (2019) 152–158.
  86. C. Kim, P. Srimuk, J. Lee, M. Aslan, V. Presser, Semi-continuous capacitive deionization using multi-channel flow stream and ion exchange membranes, Desalination, 425 (2018) 104–110.
  87. K. Fang, H. Gong, W. He, F. Peng, C. He, K. Wang, Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization, Chem. Eng. J., 348 (2018) 301–309.
  88. J. Ma, P. Liang, X. Sun, H. Zhang, Y. Bian, F. Yang, J. Bai, Q. Gong, X. Huang, Energy recovery from the flow-electrode capacitive deionization, J. Power Sources, 421 (2019) 50–55.
  89. S. Yang, H. Kim, S. Jeon, J. Choi, J. Yeo, H. Park, J. Jin, D.K. Kim, Analysis of the desalting performance of flowelectrode capacitive deionization under short-circuited closed cycle operation, Desalination, 424 (2017) 110–121.
  90. C. He, J. Ma, C. Zhang, J. Song, T.D. Waite, Short-circuited closed-cycle operation of flow-electrode CDI for Brackish water softening, Environ. Sci. Technol., 52 (2018) 9350–9360.
  91. S. Choi, B. Chang, J.H. Kang, M.S. Diallo, J.W. Choi, Energyefficient hybrid FCDI-NF desalination process with tunable salt rejection and high water recovery, J. Membr. Sci., 541 (2017) 580–586.
  92. L. Wang, S. Lin, Membrane capacitive deionization with constant current vs. constant voltage charging: which is better?, Environ. Sci. Technol., 52 (2018) 4051–4060.
  93. R. Zhao, Theory and Operation of Capacitive Deionization Systems, Ph.D. Thesis, Wageningen Universiteit (Wageningen University), 2013, pp. 1–155.
  94. G.J. Doornbusch, J.E. Dykstra, P.M. Biesheuvel, M.E. Suss, Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization, J. Mater. Chem. A, 4 (2016) 3642–3647.
  95. Y. Zhao, Y. Wang, R. Wang, Y. Wu, S. Xu, J. Wang, Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes, Desalination, 324 (2013) 127–133.
  96. K.B. Hatzell, Y. Gogotsi, Chapter 11 – Suspension Electrodes for Flow-Assisted Electrochemical Systems, K.I. Ozoemena, S. Chen, Eds., Nanomaterials in Advanced Batteries and Supercapacitors, 2016, pp. 377–416.
  97. Y. Cho, C.Y. Yoo, S.W. Lee, H. Yoon, K.S. Lee, S. Yang, D.K. Kim, Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes, Water Res., 151 (2019) 252–259.
  98. M. Wang, S. Hou, Y. Liu, X. Xu, T. Lu, R. Zhao, L. Pan, Capacitive neutralization deionization with flow electrodes, Electrochim. Acta, 216 (2016) 211–218.
  99. W. Huang, Y. Zhang, S. Bao, R. Cruz, S. Song, Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes, Desalination, 340 (2014) 67–72.
  100. J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques, Energy Environ. Sci., 7 (2014) 3683–3689.
  101. X. Xu, M. Wang, Y. Liu, T. Lu, L. Pan, Ultrahigh desalinization performance of asymmetric flow-electrode capacitive deionization device with an improved operation voltage of 1.8 v, ACS Sustainable Chem. Eng., 5 (2017) 189–195.
  102. A. Rommerskirchen, B. Ohs, K.A. Hepp, R. Femmer, M. Wessling, Modeling continuous flow-electrode capacitive deionization processes with ion-exchange membranes, J. Membr. Sci., 546 (2018) 188–196.
  103. X. Xu, M. Wang, Y. Liu, T. Lu, L. Pan, Response to Comment on “ Ultrahigh Desalinization Performance of Asymmetric Flow- Electrode Capacitive Deionization Device with an Improved Operation Voltage of 1.8 V,” ACS Sustainable Chem. Eng., 5 (2017) 2037–2038.
  104. M.A. Ahmed, S. Tewari, Capacitive deionization: processes, materials and state of the technology, J. Electroanal. Chem., 813 (2018) 178–192.
  105. K.Y. Choo, C.Y. Yoo, M.H. Han, D.K. Kim, Electrochemical analysis of slurry electrodes for flow-electrode capacitive deionization, J. Electroanal. Chem., 806 (2017) 50–60.
  106. B. Kastening, W. Schiel, M. Henschel, Electrochemical polarization of activated carbon and graphite powder suspensions: Part I. Capacity of suspensions and polarization dynamics, J. Electroanal. Chem. Interfacial Electrochem., 191 (1985) 311–328.
  107. B. Kastening, S.S. Liutrtute, Electrochemical polarization of activated carbon and graphite powder suspensions: Part II. Exchange of ions between electrolyte and pores, J. Electroanal. Chem. Interfacial Electrochem., 214 (1986) 295–302.
  108. B. Kastening, T. Boinowitz, M. Heins, Design of a slurry electrode reactor system, J. Appl. Electrochem., 27 (1997) 147–152.
  109. D. Moreno, M. Hatzell, The influence of feed-electrode concentration differences in flow-electrode systems for capacitive deionization, Ind. Eng. Chem. Res., 57 (2018) 8802–8809.
  110. W. Tang, P. Kovalsky, B. Cao, D. He, T.D. Waite, Fluoride removal from brackish groundwaters by constant current capacitive deionization (CDI), Environ. Sci. Technol., 50 (2016) 10570–10579.