References

  1. Z. Al-Qodah, Biosorption of heavy metal ions from aqueous solutions by activated sludge, Desalination, 196 (2006) 164–176.
  2. Z. Al-Qodah, M.A. Yahya, M. Al-Shannag, On the performance of bioadsorption processes for heavy metal ions removal by low-cost agricultural and natural by-products bioadsorbent: a review, Desal. Water Treat., 85 (2017) 339–357.
  3. B. Southichak, K. Nakano, M. Nomura, N. Chiba, O. Nishimura, Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution, Water Res., 40 (2006) 2295–2302.
  4. A.A. Mengistie, T. Siva Rao, A.V. Prasada Rao, Adsorption of Mn(II) ions from wastewater using activated carbon obtained from Birbira (Militia ferruginea) leaves, Global J. Sci. Front. Res. Chem., 12 (2012) 1–12.
  5. WHO, Guidelines for Drinking Water Quality. Health Criteria and Other Support Information, World Health Organization, 1996, pp. 248–253.
  6. K.Y. Tiller, Heavy Metals in Soils and Their Environmental Significance, B.A. Stewart, Ed., Advances in Soil Science, Vol. 9, Springer, New York, NY, 1989, pp. 113–142.
  7. D.C. Sharma, C.F. Forster, A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents, Bioresour. Technol., 47 (1994) 257–264.
  8. S.R. Taffarel, J. Rubio, Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite, Miner. Eng., 23 (2010) 1131–1138.
  9. Malaysia Sewage and Industrial Effluent Discharge Standards: Environmental Quality (Sewage and Industrial Effluents) (Amendment) Regulations 1997, Kuala Lumpur, Malaysia, 2020.
  10. F.L. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  11. Z. Zhu, C. Gao, Y.L. Wu, L.F. Sun, X.L. Huang, W. Ran, Q.R. Shen, Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite, Bioresour. Technol., 147 (2013) 378–386.
  12. I. Kuźniarska-Biernacka, A.M. Fonseca, I.C. Neves, Manganese complexes with triazenido ligands encapsulated in NaY zeolite as heterogeneous catalysts, Inorg. Chim. Acta, 394 (2013) 591–597.
  13. S.Q. Kong, Y.X. Wang, H.B. Zhan, S.H. Yuan, M. Yu, M.L. Liu, Adsorption/oxidation of arsenic in groundwater by nanoscale Fe-Mn binary oxides loaded on zeolite, Water Environ. Res., 86 (2014) 147–155.
  14. W.H. Zou, R.P. Han, Z.Z. Chen, J.H. Zhang, J. Shi, Kinetic study of adsorption of Cu(II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode, Colloids Surf., A, 279 (2006) 238–246.
  15. R.P. Han, W.H. Zou, Y. Wang, L. Zhu, Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect, J. Environ. Radioact., 93 (2007) 127–143.
  16. J.W. Murray, The surface chemistry of hydrous manganese dioxide, J. Colloid Interface Sci., 46 (1974) 357–371.
  17. Z.W. Zhao, J. Liu, F.Y. Cui, H. Feng, L.L. Zhang, One pot synthesis of tunable Fe3O4–MnO2 core-shell nanoplates and their applications for water purification, J. Mater. Chem., 22 (2012) 9052–9057.
  18. M. Richter, H. Berndt, R. Eckelt, M. Schneider, R. Fricke, Zeolite-mediated removal of NOx by NH3 from exhaust streams at low temperatures, Catal. Today, 54 (1999) 531–545.
  19. M.Y. Ali, M.W. Rahman, M. Moniruzzaman, M.J. Alam, I. Saha, M.A. Halim, A. Deb, M.S.A. Sumi, S. Parvin, B.K. Biswas, M.A. Haque, M.R. Khan, M. Khan, Nypa fruticans as a Potential Low-cost Adsorbent to Uptake Heavy Metals from Industrial Wastewater, Vol. 55, Conference of Engineering and Technology, Computer, Basic and Applied Sciences (ECBA 2016), Singapore, 25–26 January 2016, pp. 18–25.
  20. M.M.R. Khan, M.W. Rahman, H.R. Ong, A.B. Ismail, C.K. Cheng, Tea dust as a potential low-cost adsorbent for the removal of crystal violet from aqueous solution, Desal. Water Treat., 57 (2016) 14728–14738.
  21. M.K. Seliem, S. Komarneni, Equilibrium and kinetic studies for adsorption of iron from aqueous solution by synthetic Na-A zeolites: statistical modeling and optimization, Microporous Mesoporous Mater., 228 (2016) 266–274.
  22. A.M. Zayed, A.Q. Selim, E.A. Mohamed, M.S.M. Abdel Wahed, M.K. Seliem, M. Sillanpää, Adsorption characteristics of Na-A zeolites synthesized from Egyptian kaolinite for manganese in aqueous solutions: response surface modeling and optimization, Appl. Clay Sci., 140 (2017) 17–24.
  23. L.S. Balistrieri, J.W. Murray, The surface chemistry of δMnO2 in major ion seawater, Geochim. Cosmochim. Acta, 46 (1982) 1041–1052.
  24. M.I.S. de Mello, E.V. Sobrinho, V.L.S.T. da Silva, S.B.C. Pergher, V or Mn zeolite catalysts for the oxidative desulfurization of diesel fractions using dibenzothiophene as a probe molecule: preliminary study, J. Mol. Catal., 482 (2020) 100495, doi: 10.1016/j.mcat.2018.02.009.
  25. S. Mandina, F. Chigondo, M. Shumba, B.C. Nyamunda, E. Sebata, Removal of chromium(VI) from aqueous solution using chemically modified orange (Citrus cinensis) peel, J. Appl. Chem., 6 (2013) 66–75.
  26. M.W. Rahman, M.Y. Ali, I. Saha, M. Al Raihan, M. Moniruzzaman, M.J. Alam, A. Deb, M.M.R. Khan, Date palm fiber as a potential low-cost adsorbent to uptake chromium(VI) from industrial wastewater, Desal. Water Treat., 88 (2017) 169–178.
  27. S. Parvin, M.W. Rahman, I. Saha, M.J. Alam, M.M.R. Khan, Coconut tree bark as a potential low-cost adsorbent for the removal of methylene blue from wastewater, Desal. Water Treat., 146 (2019) 385–392.
  28. H. Hohl, W. Stumn, Interaction of Pb2+ with hydrous C-Al2O2, J. Colloid Interface Sci., 55 (1976) 281–288.
  29. M.M. Benjamin, J.O. Leckie, Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide, J. Colloid Interface Sci., 79 (1981) 209–221.
  30. Y.N. Chen, Y.Q. Liu, Y.P. Li, Y.X. Wu, Y.R. Chen, Y.H. Liu, J.C. Zhang, F.T. Xu, M.L. Li, L.S. Li, Synthesis, application and mechanisms of ferro-manganese binary oxide in water remediation: a review, Chem. Eng. J., 388 (2020) 124313, doi: 10.1016/j.cej.2020.124313.
  31. R.P. Han, W.H. Zou, Z.P. Zhang, J. Shi, J.J. Yang, Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand: I. Characterization and kinetic study, J. Hazard. Mater. B, 137 (2006) 384–395.
  32. J. Bjerrum, G. Schwarzenbach, I.G. Sillen, Stability Constants of Metal Ion Complexes, Part II, Special Publ. 7, The Chemical Society, London, UK, 1958, pp. 131.
  33. R.M. Smith, A.F. Martell, Critically Stability Constants, Plenum Press, 1982, pp. 79–84.
  34. E.L. Shock, D.C. Sassani, M. Willis, D.A. Sverjensky, Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes, Geochim. Cosmochim. Acta, 61 (1997) 907–950.
  35. Landolt-Bornstein, Thermodynamics Equilibria of the Extraction of Cobalt(II) from Scientific Group Thermodata Europe (SGTE), Springer Verlag, Berlin-Heidelberg, Germany, 1999, p. 405.
  36. H.R. Pouretedal, N. Sadegh, Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood, J. Water Process Eng., 1 (2014) 64–73.
  37. S. Saha, A. Pal, Microporous assembly of MnO2 nanosheets for malachite green degradation, Sep. Sci. Technol., 134 (2014) 26–36.
  38. R. Perry, D. Green, Perry’s Chemical Engineers’ Handbook, 7th ed., McGraw-Hill, New York, USA, 1999.
  39. S. Lagergren, Zur Theorie der sogenannten adsorption gelöster stoff, Kungliga Svenska Vetenskapasakademiens, Handlingar, 24 (1989) 1–39.
  40. G. McKay, The adsorption of basic dye onto silica from aqueous solution-solid diffusion model, Chem. Eng. Sci., 39 (1984) 129–138.
  41. V.C. Taty-Costodes, H. Fauduet, C. Porte, A. Delacroix, Removal of Cd(II) and Pb(II) ions, from aqueous solutions by adsorption onto sawdust of Pinus sylvestris, J. Hazard. Mater., 105 (2003) 121–142.
  42. M.R. Samarghandi, T.J. Al-Musawi, A. Mohseni-Bandpi, M. Zarrabi, Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles, J. Mol. Liq., 211 (2015) 431–441.